📄 spteqr.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static real c_b7 = 0.f;
static real c_b8 = 1.f;
static integer c__0 = 0;
static integer c__1 = 1;
/* Subroutine */ int spteqr_(char *compz, integer *n, real *d__, real *e,
real *z__, integer *ldz, real *work, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static real c__[1] /* was [1][1] */;
static integer i__;
extern logical lsame_(char *, char *);
static real vt[1] /* was [1][1] */;
extern /* Subroutine */ int xerbla_(char *, integer *), slaset_(
char *, integer *, integer *, real *, real *, real *, integer *), sbdsqr_(char *, integer *, integer *, integer *, integer
*, real *, real *, real *, integer *, real *, integer *, real *,
integer *, real *, integer *);
static integer icompz;
extern /* Subroutine */ int spttrf_(integer *, real *, real *, integer *);
static integer nru;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1999
Common block to return operation count and iteration count
ITCNT is initialized to 0, OPS is only incremented
Purpose
=======
SPTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric positive definite tridiagonal matrix by first factoring the
matrix using SPTTRF, and then calling SBDSQR to compute the singular
values of the bidiagonal factor.
This routine computes the eigenvalues of the positive definite
tridiagonal matrix to high relative accuracy. This means that if the
eigenvalues range over many orders of magnitude in size, then the
small eigenvalues and corresponding eigenvectors will be computed
more accurately than, for example, with the standard QR method.
The eigenvectors of a full or band symmetric positive definite matrix
can also be found if SSYTRD, SSPTRD, or SSBTRD has been used to
reduce this matrix to tridiagonal form. (The reduction to tridiagonal
form, however, may preclude the possibility of obtaining high
relative accuracy in the small eigenvalues of the original matrix, if
these eigenvalues range over many orders of magnitude.)
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvectors of original symmetric
matrix also. Array Z contains the orthogonal
matrix used to reduce the original matrix to
tridiagonal form.
= 'I': Compute eigenvectors of tridiagonal matrix also.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal
matrix.
On normal exit, D contains the eigenvalues, in descending
order.
E (input/output) REAL array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) REAL array, dimension (LDZ, N)
On entry, if COMPZ = 'V', the orthogonal matrix used in the
reduction to tridiagonal form.
On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
original symmetric matrix;
if COMPZ = 'I', the orthonormal eigenvectors of the
tridiagonal matrix.
If INFO > 0 on exit, Z contains the eigenvectors associated
with only the stored eigenvalues.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
COMPZ = 'V' or 'I', LDZ >= max(1,N).
WORK (workspace) REAL array, dimension (4*N)
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is:
<= N the Cholesky factorization of the matrix could
not be performed because the i-th principal minor
was not positive definite.
> N the SVD algorithm failed to converge;
if INFO = N+i, i off-diagonal elements of the
bidiagonal factor did not converge to zero.
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
/* Function Body */
*info = 0;
if (lsame_(compz, "N")) {
icompz = 0;
} else if (lsame_(compz, "V")) {
icompz = 1;
} else if (lsame_(compz, "I")) {
icompz = 2;
} else {
icompz = -1;
}
if (icompz < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SPTEQR", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (icompz > 0) {
z___ref(1, 1) = 1.f;
}
return 0;
}
if (icompz == 2) {
slaset_("Full", n, n, &c_b7, &c_b8, &z__[z_offset], ldz);
}
/* Call SPTTRF to factor the matrix. */
latime_1.ops = latime_1.ops + *n * 5 - 4;
spttrf_(n, &d__[1], &e[1], info);
if (*info != 0) {
return 0;
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] = sqrt(d__[i__]);
/* L10: */
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
e[i__] *= d__[i__];
/* L20: */
}
/* Call SBDSQR to compute the singular values/vectors of the
bidiagonal factor. */
if (icompz > 0) {
nru = *n;
} else {
nru = 0;
}
sbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[
z_offset], ldz, c__, &c__1, &work[1], info);
/* Square the singular values. */
if (*info == 0) {
latime_1.ops += *n;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
d__[i__] *= d__[i__];
/* L30: */
}
} else {
*info = *n + *info;
}
return 0;
/* End of SPTEQR */
} /* spteqr_ */
#undef z___ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -