📄 dlaed4.c
字号:
d__1))));
} else {
tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
c__ * 2.);
}
} else {
/* (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1)
We choose d(i+1) as origin. */
orgati = FALSE_;
del = d__[ip1] - d__[*i__];
a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
b = z__[ip1] * z__[ip1] * del;
if (a < 0.) {
tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
d__1))));
} else {
tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
(c__ * 2.);
}
}
if (orgati) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
delta[j] = d__[j] - d__[*i__] - tau;
/* L130: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
delta[j] = d__[j] - d__[ip1] - tau;
/* L140: */
}
}
if (orgati) {
ii = *i__;
} else {
ii = *i__ + 1;
}
iim1 = ii - 1;
iip1 = ii + 1;
latime_1.ops = latime_1.ops + *n * 13 + (iim1 - iip1) * 6 + 45;
/* Evaluate PSI and the derivative DPSI */
dpsi = 0.;
psi = 0.;
erretm = 0.;
i__1 = iim1;
for (j = 1; j <= i__1; ++j) {
temp = z__[j] / delta[j];
psi += z__[j] * temp;
dpsi += temp * temp;
erretm += psi;
/* L150: */
}
erretm = abs(erretm);
/* Evaluate PHI and the derivative DPHI */
dphi = 0.;
phi = 0.;
i__1 = iip1;
for (j = *n; j >= i__1; --j) {
temp = z__[j] / delta[j];
phi += z__[j] * temp;
dphi += temp * temp;
erretm += phi;
/* L160: */
}
w = rhoinv + phi + psi;
/* W is the value of the secular function with
its ii-th element removed. */
swtch3 = FALSE_;
if (orgati) {
if (w < 0.) {
swtch3 = TRUE_;
}
} else {
if (w > 0.) {
swtch3 = TRUE_;
}
}
if (ii == 1 || ii == *n) {
swtch3 = FALSE_;
}
temp = z__[ii] / delta[ii];
dw = dpsi + dphi + temp * temp;
temp = z__[ii] * temp;
w += temp;
erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
abs(tau) * dw;
/* Test for convergence */
if (abs(w) <= eps * erretm) {
if (orgati) {
*dlam = d__[*i__] + tau;
} else {
*dlam = d__[ip1] + tau;
}
goto L250;
}
/* Calculate the new step */
latime_1.ops += 14;
++niter;
if (! swtch3) {
if (orgati) {
/* Computing 2nd power */
d__1 = z__[*i__] / delta[*i__];
c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (d__1 *
d__1);
} else {
/* Computing 2nd power */
d__1 = z__[ip1] / delta[ip1];
c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (d__1 *
d__1);
}
a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] *
dw;
b = delta[*i__] * delta[ip1] * w;
if (c__ == 0.) {
if (a == 0.) {
latime_1.ops += 5;
if (orgati) {
a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] *
(dpsi + dphi);
} else {
a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] *
(dpsi + dphi);
}
}
eta = b / a;
} else if (a <= 0.) {
latime_1.ops += 8;
eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
c__ * 2.);
} else {
latime_1.ops += 8;
eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
d__1))));
}
} else {
/* Interpolation using THREE most relevant poles */
latime_1.ops += 15;
temp = rhoinv + psi + phi;
if (orgati) {
temp1 = z__[iim1] / delta[iim1];
temp1 *= temp1;
c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
iip1]) * temp1;
zz[0] = z__[iim1] * z__[iim1];
zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
} else {
temp1 = z__[iip1] / delta[iip1];
temp1 *= temp1;
c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
iim1]) * temp1;
zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
zz[2] = z__[iip1] * z__[iip1];
}
zz[1] = z__[ii] * z__[ii];
dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
if (*info != 0) {
goto L250;
}
}
/* Note, eta should be positive if w is negative, and
eta should be negative otherwise. However,
if for some reason caused by roundoff, eta*w > 0,
we simply use one Newton step instead. This way
will guarantee eta*w < 0. */
latime_1.ops = latime_1.ops + 18 + *n * 7 + (iim1 - iip1) * 6;
if (w * eta >= 0.) {
latime_1.ops += 1;
eta = -w / dw;
}
temp = tau + eta;
del = (d__[ip1] - d__[*i__]) / 2.;
if (orgati) {
if (temp >= del) {
latime_1.ops += 1;
eta = del - tau;
}
if (temp <= 0.) {
latime_1.ops += 1;
eta /= 2.;
}
} else {
if (temp <= -del) {
latime_1.ops += 1;
eta = -del - tau;
}
if (temp >= 0.) {
latime_1.ops += 1;
eta /= 2.;
}
}
prew = w;
/* L170: */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
delta[j] -= eta;
/* L180: */
}
/* Evaluate PSI and the derivative DPSI */
dpsi = 0.;
psi = 0.;
erretm = 0.;
i__1 = iim1;
for (j = 1; j <= i__1; ++j) {
temp = z__[j] / delta[j];
psi += z__[j] * temp;
dpsi += temp * temp;
erretm += psi;
/* L190: */
}
erretm = abs(erretm);
/* Evaluate PHI and the derivative DPHI */
dphi = 0.;
phi = 0.;
i__1 = iip1;
for (j = *n; j >= i__1; --j) {
temp = z__[j] / delta[j];
phi += z__[j] * temp;
dphi += temp * temp;
erretm += phi;
/* L200: */
}
temp = z__[ii] / delta[ii];
dw = dpsi + dphi + temp * temp;
temp = z__[ii] * temp;
w = rhoinv + phi + psi + temp;
erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + (
d__1 = tau + eta, abs(d__1)) * dw;
swtch = FALSE_;
if (orgati) {
if (-w > abs(prew) / 10.) {
swtch = TRUE_;
}
} else {
if (w > abs(prew) / 10.) {
swtch = TRUE_;
}
}
tau += eta;
/* Main loop to update the values of the array DELTA */
iter = niter + 1;
for (niter = iter; niter <= 20; ++niter) {
/* Test for convergence */
latime_1.ops += 1;
if (abs(w) <= eps * erretm) {
latime_1.ops += 1;
if (orgati) {
*dlam = d__[*i__] + tau;
} else {
*dlam = d__[ip1] + tau;
}
goto L250;
}
/* Calculate the new step */
if (! swtch3) {
latime_1.ops += 14;
if (! swtch) {
if (orgati) {
/* Computing 2nd power */
d__1 = z__[*i__] / delta[*i__];
c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
d__1 * d__1);
} else {
/* Computing 2nd power */
d__1 = z__[ip1] / delta[ip1];
c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) *
(d__1 * d__1);
}
} else {
temp = z__[ii] / delta[ii];
if (orgati) {
dpsi += temp * temp;
} else {
dphi += temp * temp;
}
c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
}
a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1]
* dw;
b = delta[*i__] * delta[ip1] * w;
if (c__ == 0.) {
if (a == 0.) {
latime_1.ops += 5;
if (! swtch) {
if (orgati) {
a = z__[*i__] * z__[*i__] + delta[ip1] *
delta[ip1] * (dpsi + dphi);
} else {
a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
*i__] * (dpsi + dphi);
}
} else {
a = delta[*i__] * delta[*i__] * dpsi + delta[ip1]
* delta[ip1] * dphi;
}
}
latime_1.ops += 1;
eta = b / a;
} else if (a <= 0.) {
latime_1.ops += 8;
eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
/ (c__ * 2.);
} else {
latime_1.ops += 8;
eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
abs(d__1))));
}
} else {
/* Interpolation using THREE most relevant poles */
latime_1.ops += 2;
temp = rhoinv + psi + phi;
if (swtch) {
latime_1.ops += 10;
c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
zz[0] = delta[iim1] * delta[iim1] * dpsi;
zz[2] = delta[iip1] * delta[iip1] * dphi;
} else {
latime_1.ops += 14;
if (orgati) {
temp1 = z__[iim1] / delta[iim1];
temp1 *= temp1;
c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1]
- d__[iip1]) * temp1;
zz[0] = z__[iim1] * z__[iim1];
zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 +
dphi);
} else {
temp1 = z__[iip1] / delta[iip1];
temp1 *= temp1;
c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1]
- d__[iim1]) * temp1;
zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi -
temp1));
zz[2] = z__[iip1] * z__[iip1];
}
}
dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta,
info);
if (*info != 0) {
goto L250;
}
}
/* Note, eta should be positive if w is negative, and
eta should be negative otherwise. However,
if for some reason caused by roundoff, eta*w > 0,
we simply use one Newton step instead. This way
will guarantee eta*w < 0. */
latime_1.ops = latime_1.ops + *n * 7 + (iim1 - iip1) * 6 + 18;
if (w * eta >= 0.) {
latime_1.ops += 1;
eta = -w / dw;
}
temp = tau + eta;
del = (d__[ip1] - d__[*i__]) / 2.;
if (orgati) {
if (temp >= del) {
eta = del - tau;
latime_1.ops += 1;
}
if (temp <= 0.) {
eta /= 2.;
latime_1.ops += 1;
}
} else {
if (temp <= -del) {
eta = -del - tau;
latime_1.ops += 1;
}
if (temp >= 0.) {
eta /= 2.;
latime_1.ops += 1;
}
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
delta[j] -= eta;
/* L210: */
}
tau += eta;
prew = w;
/* Evaluate PSI and the derivative DPSI */
dpsi = 0.;
psi = 0.;
erretm = 0.;
i__1 = iim1;
for (j = 1; j <= i__1; ++j) {
temp = z__[j] / delta[j];
psi += z__[j] * temp;
dpsi += temp * temp;
erretm += psi;
/* L220: */
}
erretm = abs(erretm);
/* Evaluate PHI and the derivative DPHI */
dphi = 0.;
phi = 0.;
i__1 = iip1;
for (j = *n; j >= i__1; --j) {
temp = z__[j] / delta[j];
phi += z__[j] * temp;
dphi += temp * temp;
erretm += phi;
/* L230: */
}
temp = z__[ii] / delta[ii];
dw = dpsi + dphi + temp * temp;
temp = z__[ii] * temp;
w = rhoinv + phi + psi + temp;
erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.
+ abs(tau) * dw;
if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
swtch = ! swtch;
}
/* L240: */
}
/* Return with INFO = 1, NITER = MAXIT and not converged */
*info = 1;
latime_1.ops += 1;
if (orgati) {
*dlam = d__[*i__] + tau;
} else {
*dlam = d__[ip1] + tau;
}
}
L250:
return 0;
/* End of DLAED4 */
} /* dlaed4_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -