📄 stgevc.c
字号:
if (ilall) {
ilcomp = TRUE_;
} else if (ilcplx) {
ilcomp = select[je] || select[je - 1];
} else {
ilcomp = select[je];
}
if (! ilcomp) {
goto L500;
}
/* Decide if (a) singular pencil, (b) real eigenvalue, or
(c) complex eigenvalue. */
if (! ilcplx) {
if ((r__1 = a_ref(je, je), dabs(r__1)) <= safmin && (r__2 =
b_ref(je, je), dabs(r__2)) <= safmin) {
/* Singular matrix pencil -- returns unit eigenvector */
--ieig;
i__1 = *n;
for (jr = 1; jr <= i__1; ++jr) {
vr_ref(jr, ieig) = 0.f;
/* L230: */
}
vr_ref(ieig, ieig) = 1.f;
goto L500;
}
}
/* Clear vector */
i__1 = nw - 1;
for (jw = 0; jw <= i__1; ++jw) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
work[(jw + 2) * *n + jr] = 0.f;
/* L240: */
}
/* L250: */
}
/* Compute coefficients in ( a A - b B ) x = 0
a is ACOEF
b is BCOEFR + i*BCOEFI */
if (! ilcplx) {
/* Real eigenvalue
Computing MAX */
r__3 = (r__1 = a_ref(je, je), dabs(r__1)) * ascale, r__4 = (
r__2 = b_ref(je, je), dabs(r__2)) * bscale, r__3 =
max(r__3,r__4);
temp = 1.f / dmax(r__3,safmin);
salfar = temp * a_ref(je, je) * ascale;
sbeta = temp * b_ref(je, je) * bscale;
acoef = sbeta * ascale;
bcoefr = salfar * bscale;
bcoefi = 0.f;
/* Scale to avoid underflow */
scale = 1.f;
lsa = dabs(sbeta) >= safmin && dabs(acoef) < small;
lsb = dabs(salfar) >= safmin && dabs(bcoefr) < small;
if (lsa) {
scale = small / dabs(sbeta) * dmin(anorm,big);
}
if (lsb) {
/* Computing MAX */
r__1 = scale, r__2 = small / dabs(salfar) * dmin(bnorm,
big);
scale = dmax(r__1,r__2);
}
if (lsa || lsb) {
/* Computing MIN
Computing MAX */
r__3 = 1.f, r__4 = dabs(acoef), r__3 = max(r__3,r__4),
r__4 = dabs(bcoefr);
r__1 = scale, r__2 = 1.f / (safmin * dmax(r__3,r__4));
scale = dmin(r__1,r__2);
if (lsa) {
acoef = ascale * (scale * sbeta);
} else {
acoef = scale * acoef;
}
if (lsb) {
bcoefr = bscale * (scale * salfar);
} else {
bcoefr = scale * bcoefr;
}
}
acoefa = dabs(acoef);
bcoefa = dabs(bcoefr);
/* First component is 1 */
work[(*n << 1) + je] = 1.f;
xmax = 1.f;
/* Compute contribution from column JE of A and B to sum
(See "Further Details", above.) */
i__1 = je - 1;
for (jr = 1; jr <= i__1; ++jr) {
work[(*n << 1) + jr] = bcoefr * b_ref(jr, je) - acoef *
a_ref(jr, je);
/* L260: */
}
} else {
/* Complex eigenvalue */
r__1 = safmin * 100.f;
slag2_(&a_ref(je - 1, je - 1), lda, &b_ref(je - 1, je - 1),
ldb, &r__1, &acoef, &temp, &bcoefr, &temp2, &bcoefi);
if (bcoefi == 0.f) {
*info = je - 1;
return 0;
}
/* Scale to avoid over/underflow */
acoefa = dabs(acoef);
bcoefa = dabs(bcoefr) + dabs(bcoefi);
scale = 1.f;
if (acoefa * ulp < safmin && acoefa >= safmin) {
scale = safmin / ulp / acoefa;
}
if (bcoefa * ulp < safmin && bcoefa >= safmin) {
/* Computing MAX */
r__1 = scale, r__2 = safmin / ulp / bcoefa;
scale = dmax(r__1,r__2);
}
if (safmin * acoefa > ascale) {
scale = ascale / (safmin * acoefa);
}
if (safmin * bcoefa > bscale) {
/* Computing MIN */
r__1 = scale, r__2 = bscale / (safmin * bcoefa);
scale = dmin(r__1,r__2);
}
if (scale != 1.f) {
acoef = scale * acoef;
acoefa = dabs(acoef);
bcoefr = scale * bcoefr;
bcoefi = scale * bcoefi;
bcoefa = dabs(bcoefr) + dabs(bcoefi);
}
/* Compute first two components of eigenvector
and contribution to sums */
temp = acoef * a_ref(je, je - 1);
temp2r = acoef * a_ref(je, je) - bcoefr * b_ref(je, je);
temp2i = -bcoefi * b_ref(je, je);
if (dabs(temp) >= dabs(temp2r) + dabs(temp2i)) {
work[(*n << 1) + je] = 1.f;
work[*n * 3 + je] = 0.f;
work[(*n << 1) + je - 1] = -temp2r / temp;
work[*n * 3 + je - 1] = -temp2i / temp;
} else {
work[(*n << 1) + je - 1] = 1.f;
work[*n * 3 + je - 1] = 0.f;
temp = acoef * a_ref(je - 1, je);
work[(*n << 1) + je] = (bcoefr * b_ref(je - 1, je - 1) -
acoef * a_ref(je - 1, je - 1)) / temp;
work[*n * 3 + je] = bcoefi * b_ref(je - 1, je - 1) / temp;
}
/* Computing MAX */
r__5 = (r__1 = work[(*n << 1) + je], dabs(r__1)) + (r__2 =
work[*n * 3 + je], dabs(r__2)), r__6 = (r__3 = work[(*
n << 1) + je - 1], dabs(r__3)) + (r__4 = work[*n * 3
+ je - 1], dabs(r__4));
xmax = dmax(r__5,r__6);
/* Compute contribution from columns JE and JE-1
of A and B to the sums. */
creala = acoef * work[(*n << 1) + je - 1];
cimaga = acoef * work[*n * 3 + je - 1];
crealb = bcoefr * work[(*n << 1) + je - 1] - bcoefi * work[*n
* 3 + je - 1];
cimagb = bcoefi * work[(*n << 1) + je - 1] + bcoefr * work[*n
* 3 + je - 1];
cre2a = acoef * work[(*n << 1) + je];
cim2a = acoef * work[*n * 3 + je];
cre2b = bcoefr * work[(*n << 1) + je] - bcoefi * work[*n * 3
+ je];
cim2b = bcoefi * work[(*n << 1) + je] + bcoefr * work[*n * 3
+ je];
i__1 = je - 2;
for (jr = 1; jr <= i__1; ++jr) {
work[(*n << 1) + jr] = -creala * a_ref(jr, je - 1) +
crealb * b_ref(jr, je - 1) - cre2a * a_ref(jr, je)
+ cre2b * b_ref(jr, je);
work[*n * 3 + jr] = -cimaga * a_ref(jr, je - 1) + cimagb *
b_ref(jr, je - 1) - cim2a * a_ref(jr, je) +
cim2b * b_ref(jr, je);
/* L270: */
}
}
/* Computing MAX */
r__1 = ulp * acoefa * anorm, r__2 = ulp * bcoefa * bnorm, r__1 =
max(r__1,r__2);
dmin__ = dmax(r__1,safmin);
/* Columnwise triangular solve of (a A - b B) x = 0 */
il2by2 = FALSE_;
/* ------------------- Begin Timing Code ---------------------- */
opst = 0.f;
in2by2 = 0;
/* -------------------- End Timing Code ----------------------- */
for (j = je - nw; j >= 1; --j) {
/* ------------------- Begin Timing Code ------------------- */
opssca = (real) (nw * je + 1);
/* -------------------- End Timing Code --------------------
If a 2-by-2 block, is in position j-1:j, wait until
next iteration to process it (when it will be j:j+1) */
if (! il2by2 && j > 1) {
if (a_ref(j, j - 1) != 0.f) {
il2by2 = TRUE_;
/* -------------- Begin Timing Code ----------------- */
++in2by2;
/* --------------- End Timing Code ------------------- */
goto L370;
}
}
bdiag[0] = b_ref(j, j);
if (il2by2) {
na = 2;
bdiag[1] = b_ref(j + 1, j + 1);
} else {
na = 1;
}
/* Compute x(j) (and x(j+1), if 2-by-2 block) */
slaln2_(&c_false, &na, &nw, &dmin__, &acoef, &a_ref(j, j),
lda, bdiag, &bdiag[1], &work[(*n << 1) + j], n, &
bcoefr, &bcoefi, sum, &c__2, &scale, &temp, &iinfo);
if (scale < 1.f) {
i__1 = nw - 1;
for (jw = 0; jw <= i__1; ++jw) {
i__2 = je;
for (jr = 1; jr <= i__2; ++jr) {
work[(jw + 2) * *n + jr] = scale * work[(jw + 2) *
*n + jr];
/* L280: */
}
/* L290: */
}
}
/* Computing MAX */
r__1 = scale * xmax;
xmax = dmax(r__1,temp);
/* ------------------ Begin Timing Code ----------------- */
opst += opssca;
/* ------------------- End Timing Code ------------------ */
i__1 = nw;
for (jw = 1; jw <= i__1; ++jw) {
i__2 = na;
for (ja = 1; ja <= i__2; ++ja) {
work[(jw + 1) * *n + j + ja - 1] = sum_ref(ja, jw);
/* L300: */
}
/* L310: */
}
/* w = w + x(j)*(a A(*,j) - b B(*,j) ) with scaling */
if (j > 1) {
/* Check whether scaling is necessary for sum. */
xscale = 1.f / dmax(1.f,xmax);
temp = acoefa * work[j] + bcoefa * work[*n + j];
if (il2by2) {
/* Computing MAX */
r__1 = temp, r__2 = acoefa * work[j + 1] + bcoefa *
work[*n + j + 1];
temp = dmax(r__1,r__2);
}
/* Computing MAX */
r__1 = max(temp,acoefa);
temp = dmax(r__1,bcoefa);
if (temp > bignum * xscale) {
i__1 = nw - 1;
for (jw = 0; jw <= i__1; ++jw) {
i__2 = je;
for (jr = 1; jr <= i__2; ++jr) {
work[(jw + 2) * *n + jr] = xscale * work[(jw
+ 2) * *n + jr];
/* L320: */
}
/* L330: */
}
xmax *= xscale;
/* ----------------- Begin Timing Code --------------- */
opst += opssca;
/* ------------------ End Timing Code ---------------- */
}
/* Compute the contributions of the off-diagonals of
column j (and j+1, if 2-by-2 block) of A and B to the
sums. */
i__1 = na;
for (ja = 1; ja <= i__1; ++ja) {
if (ilcplx) {
creala = acoef * work[(*n << 1) + j + ja - 1];
cimaga = acoef * work[*n * 3 + j + ja - 1];
crealb = bcoefr * work[(*n << 1) + j + ja - 1] -
bcoefi * work[*n * 3 + j + ja - 1];
cimagb = bcoefi * work[(*n << 1) + j + ja - 1] +
bcoefr * work[*n * 3 + j + ja - 1];
i__2 = j - 1;
for (jr = 1; jr <= i__2; ++jr) {
work[(*n << 1) + jr] = work[(*n << 1) + jr] -
creala * a_ref(jr, j + ja - 1) +
crealb * b_ref(jr, j + ja - 1);
work[*n * 3 + jr] = work[*n * 3 + jr] -
cimaga * a_ref(jr, j + ja - 1) +
cimagb * b_ref(jr, j + ja - 1);
/* L340: */
}
} else {
creala = acoef * work[(*n << 1) + j + ja - 1];
crealb = bcoefr * work[(*n << 1) + j + ja - 1];
i__2 = j - 1;
for (jr = 1; jr <= i__2; ++jr) {
work[(*n << 1) + jr] = work[(*n << 1) + jr] -
creala * a_ref(jr, j + ja - 1) +
crealb * b_ref(jr, j + ja - 1);
/* L350: */
}
}
/* L360: */
}
}
il2by2 = FALSE_;
L370:
;
}
/* Copy eigenvector to VR, back transforming if
HOWMNY='B'. */
ieig -= nw;
if (ilback) {
i__1 = nw - 1;
for (jw = 0; jw <= i__1; ++jw) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
work[(jw + 4) * *n + jr] = work[(jw + 2) * *n + 1] *
vr_ref(jr, 1);
/* L380: */
}
/* A series of compiler directives to defeat
vectorization for the next loop */
i__2 = je;
for (jc = 2; jc <= i__2; ++jc) {
i__3 = *n;
for (jr = 1; jr <= i__3; ++jr) {
work[(jw + 4) * *n + jr] += work[(jw + 2) * *n +
jc] * vr_ref(jr, jc);
/* L390: */
}
/* L400: */
}
/* L410: */
}
i__1 = nw - 1;
for (jw = 0; jw <= i__1; ++jw) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr_ref(jr, ieig + jw) = work[(jw + 4) * *n + jr];
/* L420: */
}
/* L430: */
}
iend = *n;
} else {
i__1 = nw - 1;
for (jw = 0; jw <= i__1; ++jw) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr_ref(jr, ieig + jw) = work[(jw + 2) * *n + jr];
/* L440: */
}
/* L450: */
}
iend = je;
}
/* Scale eigenvector */
xmax = 0.f;
if (ilcplx) {
i__1 = iend;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
r__3 = xmax, r__4 = (r__1 = vr_ref(j, ieig), dabs(r__1))
+ (r__2 = vr_ref(j, ieig + 1), dabs(r__2));
xmax = dmax(r__3,r__4);
/* L460: */
}
} else {
i__1 = iend;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
r__2 = xmax, r__3 = (r__1 = vr_ref(j, ieig), dabs(r__1));
xmax = dmax(r__2,r__3);
/* L470: */
}
}
if (xmax > safmin) {
xscale = 1.f / xmax;
i__1 = nw - 1;
for (jw = 0; jw <= i__1; ++jw) {
i__2 = iend;
for (jr = 1; jr <= i__2; ++jr) {
vr_ref(jr, ieig + jw) = xscale * vr_ref(jr, ieig + jw)
;
/* L480: */
}
/* L490: */
}
}
/* ------------------- Begin Timing Code ----------------------
Opcounts for each eigenvector
Real Complex
Initialization 8--16 + 3*(JE-1) 71--87+16+14*(JE-2)
Solve (per iter) NA*(5 + 7*(NA-1)) NA*(17 + 17*(NA-1))
+ scaling + scaling
column add (per iter)
2 + 5*NA 2 + 11*NA
+ 4*NA*(J-1) + 8*NA*(J-1)
+ scaling + scaling
iteration: J=JE-1,...,1 J=JE-2,...,1
Back xform 2*N*JE - N 4*N*JE - 2*N
Scaling (w/back x.) N 3*N
Scaling (w/o back) JE 3*JE */
if (! ilcplx) {
opst += (real) (((je << 1) + 11) * (je - 1) + 12 + (in2by2 <<
3));
if (ilback) {
opst += (real) ((*n << 1) * je);
} else {
opst += (real) je;
}
} else {
opst += (real) (((je << 2) + 32) * (je - 2) + 95 + in2by2 *
24);
if (ilback) {
opst += (real) ((*n << 2) * je + *n);
} else {
opst += (real) (je * 3);
}
}
latime_1.ops += opst;
/* -------------------- End Timing Code ----------------------- */
L500:
;
}
}
return 0;
/* End of STGEVC */
} /* stgevc_ */
#undef sum_ref
#undef vr_ref
#undef vl_ref
#undef b_ref
#undef a_ref
#undef sumb_ref
#undef suma_ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -