📄 shseqr.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static real c_b9 = 0.f;
static real c_b10 = 1.f;
static integer c__4 = 4;
static integer c_n1 = -1;
static integer c__2 = 2;
static integer c__8 = 8;
static integer c__15 = 15;
static logical c_false = FALSE_;
static integer c__1 = 1;
/* Subroutine */ int shseqr_(char *job, char *compz, integer *n, integer *ilo,
integer *ihi, real *h__, integer *ldh, real *wr, real *wi, real *z__,
integer *ldz, real *work, integer *lwork, integer *info)
{
/* System generated locals */
address a__1[2];
integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3[2], i__4,
i__5;
real r__1, r__2;
char ch__1[2];
/* Builtin functions
Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
static integer maxb;
static real absw;
static integer ierr;
static real unfl, temp, ovfl, opst;
static integer i__, j, k, l;
static real s[225] /* was [15][15] */, v[16];
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
static integer itemp;
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *);
static integer i1, i2;
static logical initz, wantt;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
static logical wantz;
extern doublereal slapy2_(real *, real *);
static integer ii, nh;
extern /* Subroutine */ int slabad_(real *, real *);
static integer nr, ns, nv;
extern doublereal slamch_(char *);
static real vv[16];
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
real *);
extern integer isamax_(integer *, real *, integer *);
extern doublereal slanhs_(char *, integer *, real *, integer *, real *);
extern /* Subroutine */ int slahqr_(logical *, logical *, integer *,
integer *, integer *, real *, integer *, real *, real *, integer *
, integer *, real *, integer *, integer *), slacpy_(char *,
integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *,
real *, integer *), slarfx_(char *, integer *, integer *,
real *, real *, real *, integer *, real *);
static real smlnum;
static logical lquery;
static integer itn;
static real tau;
static integer its;
static real ulp, tst1;
#define h___ref(a_1,a_2) h__[(a_2)*h_dim1 + a_1]
#define s_ref(a_1,a_2) s[(a_2)*15 + a_1 - 16]
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Common block to return operation count.
Purpose
=======
SHSEQR computes the eigenvalues of a real upper Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T Z**T, where T is an upper quasi-triangular matrix (the Schur
form), and Z is the orthogonal matrix of Schur vectors.
Optionally Z may be postmultiplied into an input orthogonal matrix Q,
so that this routine can give the Schur factorization of a matrix A
which has been reduced to the Hessenberg form H by the orthogonal
matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
Arguments
=========
JOB (input) CHARACTER*1
= 'E': compute eigenvalues only;
= 'S': compute eigenvalues and the Schur form T.
COMPZ (input) CHARACTER*1
= 'N': no Schur vectors are computed;
= 'I': Z is initialized to the unit matrix and the matrix Z
of Schur vectors of H is returned;
= 'V': Z must contain an orthogonal matrix Q on entry, and
the product Q*Z is returned.
N (input) INTEGER
The order of the matrix H. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
It is assumed that H is already upper triangular in rows
and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
set by a previous call to SGEBAL, and then passed to SGEHRD
when the matrix output by SGEBAL is reduced to Hessenberg
form. Otherwise ILO and IHI should be set to 1 and N
respectively.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
H (input/output) REAL array, dimension (LDH,N)
On entry, the upper Hessenberg matrix H.
On exit, if JOB = 'S', H contains the upper quasi-triangular
matrix T from the Schur decomposition (the Schur form);
2-by-2 diagonal blocks (corresponding to complex conjugate
pairs of eigenvalues) are returned in standard form, with
H(i,i) = H(i+1,i+1) and H(i+1,i)*H(i,i+1) < 0. If JOB = 'E',
the contents of H are unspecified on exit.
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
WR (output) REAL array, dimension (N)
WI (output) REAL array, dimension (N)
The real and imaginary parts, respectively, of the computed
eigenvalues. If two eigenvalues are computed as a complex
conjugate pair, they are stored in consecutive elements of
WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in the
same order as on the diagonal of the Schur form returned in
H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
diagonal block, WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and
WI(i+1) = -WI(i).
Z (input/output) REAL array, dimension (LDZ,N)
If COMPZ = 'N': Z is not referenced.
If COMPZ = 'I': on entry, Z need not be set, and on exit, Z
contains the orthogonal matrix Z of the Schur vectors of H.
If COMPZ = 'V': on entry Z must contain an N-by-N matrix Q,
which is assumed to be equal to the unit matrix except for
the submatrix Z(ILO:IHI,ILO:IHI); on exit Z contains Q*Z.
Normally Q is the orthogonal matrix generated by SORGHR after
the call to SGEHRD which formed the Hessenberg matrix H.
LDZ (input) INTEGER
The leading dimension of the array Z.
LDZ >= max(1,N) if COMPZ = 'I' or 'V'; LDZ >= 1 otherwise.
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N).
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, SHSEQR failed to compute all of the
eigenvalues in a total of 30*(IHI-ILO+1) iterations;
elements 1:ilo-1 and i+1:n of WR and WI contain those
eigenvalues which have been successfully computed.
=====================================================================
Decode and test the input parameters
Parameter adjustments */
h_dim1 = *ldh;
h_offset = 1 + h_dim1 * 1;
h__ -= h_offset;
--wr;
--wi;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
/* Function Body */
wantt = lsame_(job, "S");
initz = lsame_(compz, "I");
wantz = initz || lsame_(compz, "V");
*info = 0;
work[1] = (real) max(1,*n);
lquery = *lwork == -1;
if (! lsame_(job, "E") && ! wantt) {
*info = -1;
} else if (! lsame_(compz, "N") && ! wantz) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ilo < 1 || *ilo > max(1,*n)) {
*info = -4;
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
*info = -5;
} else if (*ldh < max(1,*n)) {
*info = -7;
} else if (*ldz < 1 || wantz && *ldz < max(1,*n)) {
*info = -11;
} else if (*lwork < max(1,*n) && ! lquery) {
*info = -13;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SHSEQR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* **
Initialize */
opst = 0.f;
/* **
Initialize Z, if necessary */
if (initz) {
slaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
}
/* Store the eigenvalues isolated by SGEBAL. */
i__1 = *ilo - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
wr[i__] = h___ref(i__, i__);
wi[i__] = 0.f;
/* L10: */
}
i__1 = *n;
for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
wr[i__] = h___ref(i__, i__);
wi[i__] = 0.f;
/* L20: */
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
if (*ilo == *ihi) {
wr[*ilo] = h___ref(*ilo, *ilo);
wi[*ilo] = 0.f;
return 0;
}
/* Set rows and columns ILO to IHI to zero below the first
subdiagonal. */
i__1 = *ihi - 2;
for (j = *ilo; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j + 2; i__ <= i__2; ++i__) {
h___ref(i__, j) = 0.f;
/* L30: */
}
/* L40: */
}
nh = *ihi - *ilo + 1;
/* Determine the order of the multi-shift QR algorithm to be used.
Writing concatenation */
i__3[0] = 1, a__1[0] = job;
i__3[1] = 1, a__1[1] = compz;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
ns = ilaenv_(&c__4, "SHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
ftnlen)2);
/* Writing concatenation */
i__3[0] = 1, a__1[0] = job;
i__3[1] = 1, a__1[1] = compz;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
maxb = ilaenv_(&c__8, "SHSEQR", ch__1, n, ilo, ihi, &c_n1, (ftnlen)6, (
ftnlen)2);
if (ns <= 2 || ns > nh || maxb >= nh) {
/* Use the standard double-shift algorithm */
slahqr_(&wantt, &wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &wi[
1], ilo, ihi, &z__[z_offset], ldz, info);
return 0;
}
maxb = max(3,maxb);
/* Computing MIN */
i__1 = min(ns,maxb);
ns = min(i__1,15);
/* Now 2 < NS <= MAXB < NH.
Set machine-dependent constants for the stopping criterion.
If norm(H) <= sqrt(OVFL), overflow should not occur. */
unfl = slamch_("Safe minimum");
ovfl = 1.f / unfl;
slabad_(&unfl, &ovfl);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -