⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slasd7.c

📁 著名的LAPACK矩阵计算软件包, 是比较新的版本, 一般用到矩阵分解的朋友也许会用到
💻 C
📖 第 1 页 / 共 2 页
字号:
    tau = vf[nlp1];
    for (i__ = *nl; i__ >= 1; --i__) {
	z__[i__ + 1] = *alpha * vl[i__];
	vl[i__] = 0.f;
	vf[i__ + 1] = vf[i__];
	d__[i__ + 1] = d__[i__];
	idxq[i__ + 1] = idxq[i__] + 1;
/* L10: */
    }
    vf[1] = tau;

/*     Generate the second part of the vector Z. */

    latime_1.ops += (real) (m - nlp2 + 1);
    i__1 = m;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	z__[i__] = *beta * vf[i__];
	vf[i__] = 0.f;
/* L20: */
    }

/*     Sort the singular values into increasing order */

    i__1 = n;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	idxq[i__] += nlp1;
/* L30: */
    }

/*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	dsigma[i__] = d__[idxq[i__]];
	zw[i__] = z__[idxq[i__]];
	vfw[i__] = vf[idxq[i__]];
	vlw[i__] = vl[idxq[i__]];
/* L40: */
    }

    slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	idxi = idx[i__] + 1;
	d__[i__] = dsigma[idxi];
	z__[i__] = zw[idxi];
	vf[i__] = vfw[idxi];
	vl[i__] = vlw[idxi];
/* L50: */
    }

/*     Calculate the allowable deflation tolerence */

    latime_1.ops += 3.f;
    eps = slamch_("Epsilon");
/* Computing MAX */
    r__1 = dabs(*alpha), r__2 = dabs(*beta);
    tol = dmax(r__1,r__2);
/* Computing MAX */
    r__2 = (r__1 = d__[n], dabs(r__1));
    tol = eps * 64.f * dmax(r__2,tol);

/*     There are 2 kinds of deflation -- first a value in the z-vector   
       is small, second two (or more) singular values are very close   
       together (their difference is small).   

       If the value in the z-vector is small, we simply permute the   
       array so that the corresponding singular value is moved to the   
       end.   

       If two values in the D-vector are close, we perform a two-sided   
       rotation designed to make one of the corresponding z-vector   
       entries zero, and then permute the array so that the deflated   
       singular value is moved to the end.   

       If there are multiple singular values then the problem deflates.   
       Here the number of equal singular values are found.  As each equal   
       singular value is found, an elementary reflector is computed to   
       rotate the corresponding singular subspace so that the   
       corresponding components of Z are zero in this new basis. */

    *k = 1;
    k2 = n + 1;
    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	if ((r__1 = z__[j], dabs(r__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    idxp[k2] = j;
	    if (j == n) {
		goto L100;
	    }
	} else {
	    jprev = j;
	    goto L70;
	}
/* L60: */
    }
L70:
    j = jprev;
L80:
    ++j;
    if (j > n) {
	goto L90;
    }
    if ((r__1 = z__[j], dabs(r__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	idxp[k2] = j;
    } else {

/*        Check if singular values are close enough to allow deflation. */

	latime_1.ops += 1.f;
	if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) {

/*           Deflation is possible. */

	    *s = z__[jprev];
	    *c__ = z__[j];

/*           Find sqrt(a**2+b**2) without overflow or   
             destructive underflow. */

	    latime_1.ops += 7.f;
	    tau = slapy2_(c__, s);
	    z__[j] = tau;
	    z__[jprev] = 0.f;
	    *c__ /= tau;
	    *s = -(*s) / tau;

/*           Record the appropriate Givens rotation */

	    if (*icompq == 1) {
		++(*givptr);
		idxjp = idxq[idx[jprev] + 1];
		idxj = idxq[idx[j] + 1];
		if (idxjp <= nlp1) {
		    --idxjp;
		}
		if (idxj <= nlp1) {
		    --idxj;
		}
		givcol_ref(*givptr, 2) = idxjp;
		givcol_ref(*givptr, 1) = idxj;
		givnum_ref(*givptr, 2) = *c__;
		givnum_ref(*givptr, 1) = *s;
	    }
	    latime_1.ops += 12.f;
	    srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
	    srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
	    --k2;
	    idxp[k2] = jprev;
	    jprev = j;
	} else {
	    ++(*k);
	    zw[*k] = z__[jprev];
	    dsigma[*k] = d__[jprev];
	    idxp[*k] = jprev;
	    jprev = j;
	}
    }
    goto L80;
L90:

/*     Record the last singular value. */

    ++(*k);
    zw[*k] = z__[jprev];
    dsigma[*k] = d__[jprev];
    idxp[*k] = jprev;

L100:

/*     Sort the singular values into DSIGMA. The singular values which   
       were not deflated go into the first K slots of DSIGMA, except   
       that DSIGMA(1) is treated separately. */

    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	jp = idxp[j];
	dsigma[j] = d__[jp];
	vfw[j] = vf[jp];
	vlw[j] = vl[jp];
/* L110: */
    }
    if (*icompq == 1) {
	i__1 = n;
	for (j = 2; j <= i__1; ++j) {
	    jp = idxp[j];
	    perm[j] = idxq[idx[jp] + 1];
	    if (perm[j] <= nlp1) {
		--perm[j];
	    }
/* L120: */
	}
    }

/*     The deflated singular values go back into the last N - K slots of   
       D. */

    i__1 = n - *k;
    scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);

/*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and   
       VL(M). */

    latime_1.ops += 1.f;
    dsigma[1] = 0.f;
    hlftol = tol / 2.f;
    if (dabs(dsigma[2]) <= hlftol) {
	dsigma[2] = hlftol;
    }
    if (m > n) {
	latime_1.ops += 5.f;
	z__[1] = slapy2_(&z1, &z__[m]);
	if (z__[1] <= tol) {
	    *c__ = 1.f;
	    *s = 0.f;
	    z__[1] = tol;
	} else {
	    latime_1.ops += 2.f;
	    *c__ = z1 / z__[1];
	    *s = -z__[m] / z__[1];
	}
	latime_1.ops += 12.f;
	srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
	srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
    } else {
	if (dabs(z1) <= tol) {
	    z__[1] = tol;
	} else {
	    z__[1] = z1;
	}
    }

/*     Restore Z, VF, and VL. */

    i__1 = *k - 1;
    scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
    i__1 = n - 1;
    scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
    i__1 = n - 1;
    scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);

    return 0;

/*     End of SLASD7 */

} /* slasd7_ */

#undef givnum_ref
#undef givcol_ref


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -