📄 claed7.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static integer c__2 = 2;
static integer c__1 = 1;
static integer c_n1 = -1;
/* Subroutine */ int claed7_(integer *n, integer *cutpnt, integer *qsiz,
integer *tlvls, integer *curlvl, integer *curpbm, real *d__, complex *
q, integer *ldq, real *rho, integer *indxq, real *qstore, integer *
qptr, integer *prmptr, integer *perm, integer *givptr, integer *
givcol, real *givnum, complex *work, real *rwork, integer *iwork,
integer *info)
{
/* System generated locals */
integer q_dim1, q_offset, i__1, i__2;
/* Builtin functions */
integer pow_ii(integer *, integer *);
/* Local variables */
static integer indx, curr, i__, k, indxc, indxp, n1, n2;
extern /* Subroutine */ int claed8_(integer *, integer *, integer *,
complex *, integer *, real *, real *, integer *, real *, real *,
complex *, integer *, real *, integer *, integer *, integer *,
integer *, integer *, integer *, real *, integer *), slaed9_(
integer *, integer *, integer *, integer *, real *, real *,
integer *, real *, real *, real *, real *, integer *, integer *),
slaeda_(integer *, integer *, integer *, integer *, integer *,
integer *, integer *, integer *, real *, real *, integer *, real *
, real *, integer *);
static integer idlmda, iq, iw;
extern /* Subroutine */ int clacrm_(integer *, integer *, complex *,
integer *, real *, integer *, complex *, integer *, real *);
static integer iz;
extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
integer *, integer *, real *, integer *, integer *, integer *);
static integer coltyp, ptr, ind1, ind2;
#define givcol_ref(a_1,a_2) givcol[(a_2)*2 + a_1]
#define givnum_ref(a_1,a_2) givnum[(a_2)*2 + a_1]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Common block to return operation count and iteration count
ITCNT is unchanged, OPS is only incremented
Purpose
=======
CLAED7 computes the updated eigensystem of a diagonal
matrix after modification by a rank-one symmetric matrix. This
routine is used only for the eigenproblem which requires all
eigenvalues and optionally eigenvectors of a dense or banded
Hermitian matrix that has been reduced to tridiagonal form.
T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
where Z = Q'u, u is a vector of length N with ones in the
CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
The eigenvectors of the original matrix are stored in Q, and the
eigenvalues are in D. The algorithm consists of three stages:
The first stage consists of deflating the size of the problem
when there are multiple eigenvalues or if there is a zero in
the Z vector. For each such occurence the dimension of the
secular equation problem is reduced by one. This stage is
performed by the routine SLAED2.
The second stage consists of calculating the updated
eigenvalues. This is done by finding the roots of the secular
equation via the routine SLAED4 (as called by SLAED3).
This routine also calculates the eigenvectors of the current
problem.
The final stage consists of computing the updated eigenvectors
directly using the updated eigenvalues. The eigenvectors for
the current problem are multiplied with the eigenvectors from
the overall problem.
Arguments
=========
N (input) INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.
CUTPNT (input) INTEGER
Contains the location of the last eigenvalue in the leading
sub-matrix. min(1,N) <= CUTPNT <= N.
QSIZ (input) INTEGER
The dimension of the unitary matrix used to reduce
the full matrix to tridiagonal form. QSIZ >= N.
TLVLS (input) INTEGER
The total number of merging levels in the overall divide and
conquer tree.
CURLVL (input) INTEGER
The current level in the overall merge routine,
0 <= curlvl <= tlvls.
CURPBM (input) INTEGER
The current problem in the current level in the overall
merge routine (counting from upper left to lower right).
D (input/output) REAL array, dimension (N)
On entry, the eigenvalues of the rank-1-perturbed matrix.
On exit, the eigenvalues of the repaired matrix.
Q (input/output) COMPLEX array, dimension (LDQ,N)
On entry, the eigenvectors of the rank-1-perturbed matrix.
On exit, the eigenvectors of the repaired tridiagonal matrix.
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N).
RHO (input) REAL
Contains the subdiagonal element used to create the rank-1
modification.
INDXQ (output) INTEGER array, dimension (N)
This contains the permutation which will reintegrate the
subproblem just solved back into sorted order,
ie. D( INDXQ( I = 1, N ) ) will be in ascending order.
IWORK (workspace) INTEGER array, dimension (4*N)
RWORK (workspace) REAL array,
dimension (3*N+2*QSIZ*N)
WORK (workspace) COMPLEX array, dimension (QSIZ*N)
QSTORE (input/output) REAL array, dimension (N**2+1)
Stores eigenvectors of submatrices encountered during
divide and conquer, packed together. QPTR points to
beginning of the submatrices.
QPTR (input/output) INTEGER array, dimension (N+2)
List of indices pointing to beginning of submatrices stored
in QSTORE. The submatrices are numbered starting at the
bottom left of the divide and conquer tree, from left to
right and bottom to top.
PRMPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in PERM a
level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
indicates the size of the permutation and also the size of
the full, non-deflated problem.
PERM (input) INTEGER array, dimension (N lg N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.
GIVPTR (input) INTEGER array, dimension (N lg N)
Contains a list of pointers which indicate where in GIVCOL a
level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
indicates the number of Givens rotations.
GIVCOL (input) INTEGER array, dimension (2, N lg N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.
GIVNUM (input) REAL array, dimension (2, N lg N)
Each number indicates the S value to be used in the
corresponding Givens rotation.
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = 1, an eigenvalue did not converge
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
--indxq;
--qstore;
--qptr;
--prmptr;
--perm;
--givptr;
givcol -= 3;
givnum -= 3;
--work;
--rwork;
--iwork;
/* Function Body */
*info = 0;
/* IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN */
if (*n < 0) {
*info = -1;
} else if (min(1,*n) > *cutpnt || *n < *cutpnt) {
*info = -2;
} else if (*qsiz < *n) {
*info = -3;
} else if (*ldq < max(1,*n)) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CLAED7", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* The following values are for bookkeeping purposes only. They are
integer pointers which indicate the portion of the workspace
used by a particular array in SLAED2 and SLAED3. */
iz = 1;
idlmda = iz + *n;
iw = idlmda + *n;
iq = iw + *n;
indx = 1;
indxc = indx + *n;
coltyp = indxc + *n;
indxp = coltyp + *n;
/* Form the z-vector which consists of the last row of Q_1 and the
first row of Q_2. */
ptr = pow_ii(&c__2, tlvls) + 1;
i__1 = *curlvl - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *tlvls - i__;
ptr += pow_ii(&c__2, &i__2);
/* L10: */
}
curr = ptr + *curpbm;
slaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
givcol[3], &givnum[3], &qstore[1], &qptr[1], &rwork[iz], &rwork[
iz + *n], info);
/* When solving the final problem, we no longer need the stored data,
so we will overwrite the data from this level onto the previously
used storage space. */
if (*curlvl == *tlvls) {
qptr[curr] = 1;
prmptr[curr] = 1;
givptr[curr] = 1;
}
/* Sort and Deflate eigenvalues. */
claed8_(&k, n, qsiz, &q[q_offset], ldq, &d__[1], rho, cutpnt, &rwork[iz],
&rwork[idlmda], &work[1], qsiz, &rwork[iw], &iwork[indxp], &iwork[
indx], &indxq[1], &perm[prmptr[curr]], &givptr[curr + 1], &
givcol_ref(1, givptr[curr]), &givnum_ref(1, givptr[curr]), info);
prmptr[curr + 1] = prmptr[curr] + *n;
givptr[curr + 1] += givptr[curr];
/* Solve Secular Equation. */
if (k != 0) {
slaed9_(&k, &c__1, &k, n, &d__[1], &rwork[iq], &k, rho, &rwork[idlmda]
, &rwork[iw], &qstore[qptr[curr]], &k, info);
latime_1.ops += (real) (*qsiz) * 4 * k * k;
clacrm_(qsiz, &k, &work[1], qsiz, &qstore[qptr[curr]], &k, &q[
q_offset], ldq, &rwork[iq]);
/* Computing 2nd power */
i__1 = k;
qptr[curr + 1] = qptr[curr] + i__1 * i__1;
if (*info != 0) {
return 0;
}
/* Prepare the INDXQ sorting premutation. */
n1 = k;
n2 = *n - k;
ind1 = 1;
ind2 = *n;
slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
} else {
qptr[curr + 1] = qptr[curr];
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
indxq[i__] = i__;
/* L20: */
}
}
return 0;
/* End of CLAED7 */
} /* claed7_ */
#undef givnum_ref
#undef givcol_ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -