📄 dlasdq.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
doublereal ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int dlasdq_(char *uplo, integer *sqre, integer *n, integer *
ncvt, integer *nru, integer *ncc, doublereal *d__, doublereal *e,
doublereal *vt, integer *ldvt, doublereal *u, integer *ldu,
doublereal *c__, integer *ldc, doublereal *work, integer *info)
{
/* System generated locals */
integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
i__2;
/* Local variables */
static integer isub;
static doublereal smin;
static integer sqre1, i__, j;
static doublereal r__;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dlasr_(char *, char *, char *, integer *,
integer *, doublereal *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *
, doublereal *, integer *);
static integer iuplo;
static doublereal cs, sn;
extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *), xerbla_(char *,
integer *), dbdsqr_(char *, integer *, integer *, integer
*, integer *, doublereal *, doublereal *, doublereal *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *);
static logical rotate;
static integer np1;
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
#define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1]
#define vt_ref(a_1,a_2) vt[(a_2)*vt_dim1 + a_1]
/* -- LAPACK auxiliary routine (instrumented to count ops, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1999
Purpose
=======
DLASDQ computes the singular value decomposition (SVD) of a real
(upper or lower) bidiagonal matrix with diagonal D and offdiagonal
E, accumulating the transformations if desired. Letting B denote
the input bidiagonal matrix, the algorithm computes orthogonal
matrices Q and P such that B = Q * S * P' (P' denotes the transpose
of P). The singular values S are overwritten on D.
The input matrix U is changed to U * Q if desired.
The input matrix VT is changed to P' * VT if desired.
The input matrix C is changed to Q' * C if desired.
See "Computing Small Singular Values of Bidiagonal Matrices With
Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
LAPACK Working Note #3, for a detailed description of the algorithm.
Arguments
=========
UPLO (input) CHARACTER*1
On entry, UPLO specifies whether the input bidiagonal matrix
is upper or lower bidiagonal, and wether it is square are
not.
UPLO = 'U' or 'u' B is upper bidiagonal.
UPLO = 'L' or 'l' B is lower bidiagonal.
SQRE (input) INTEGER
= 0: then the input matrix is N-by-N.
= 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
(N+1)-by-N if UPLU = 'L'.
The bidiagonal matrix has
N = NL + NR + 1 rows and
M = N + SQRE >= N columns.
N (input) INTEGER
On entry, N specifies the number of rows and columns
in the matrix. N must be at least 0.
NCVT (input) INTEGER
On entry, NCVT specifies the number of columns of
the matrix VT. NCVT must be at least 0.
NRU (input) INTEGER
On entry, NRU specifies the number of rows of
the matrix U. NRU must be at least 0.
NCC (input) INTEGER
On entry, NCC specifies the number of columns of
the matrix C. NCC must be at least 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, D contains the diagonal entries of the
bidiagonal matrix whose SVD is desired. On normal exit,
D contains the singular values in ascending order.
E (input/output) DOUBLE PRECISION array.
dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
On entry, the entries of E contain the offdiagonal entries
of the bidiagonal matrix whose SVD is desired. On normal
exit, E will contain 0. If the algorithm does not converge,
D and E will contain the diagonal and superdiagonal entries
of a bidiagonal matrix orthogonally equivalent to the one
given as input.
VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
On entry, contains a matrix which on exit has been
premultiplied by P', dimension N-by-NCVT if SQRE = 0
and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
LDVT (input) INTEGER
On entry, LDVT specifies the leading dimension of VT as
declared in the calling (sub) program. LDVT must be at
least 1. If NCVT is nonzero LDVT must also be at least N.
U (input/output) DOUBLE PRECISION array, dimension (LDU, N)
On entry, contains a matrix which on exit has been
postmultiplied by Q, dimension NRU-by-N if SQRE = 0
and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
LDU (input) INTEGER
On entry, LDU specifies the leading dimension of U as
declared in the calling (sub) program. LDU must be at
least max( 1, NRU ) .
C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
On entry, contains an N-by-NCC matrix which on exit
has been premultiplied by Q' dimension N-by-NCC if SQRE = 0
and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
LDC (input) INTEGER
On entry, LDC specifies the leading dimension of C as
declared in the calling (sub) program. LDC must be at
least 1. If NCC is nonzero, LDC must also be at least N.
WORK (workspace) DOUBLE PRECISION array, dimension (MAX( 1, 4*N ))
Workspace. Only referenced if one of NCVT, NRU, or NCC is
nonzero, and if N is at least 2.
INFO (output) INTEGER
On exit, a value of 0 indicates a successful exit.
If INFO < 0, argument number -INFO is illegal.
If INFO > 0, the algorithm did not converge, and INFO
specifies how many superdiagonals did not converge.
Further Details
===============
Based on contributions by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
=====================================================================
Test the input parameters.
Parameter adjustments */
--d__;
--e;
vt_dim1 = *ldvt;
vt_offset = 1 + vt_dim1 * 1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1 * 1;
u -= u_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
iuplo = 0;
if (lsame_(uplo, "U")) {
iuplo = 1;
}
if (lsame_(uplo, "L")) {
iuplo = 2;
}
if (iuplo == 0) {
*info = -1;
} else if (*sqre < 0 || *sqre > 1) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ncvt < 0) {
*info = -4;
} else if (*nru < 0) {
*info = -5;
} else if (*ncc < 0) {
*info = -6;
} else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
*info = -10;
} else if (*ldu < max(1,*nru)) {
*info = -12;
} else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
*info = -14;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DBDSQR", &i__1);
return 0;
}
if (*n == 0) {
return 0;
}
/* ROTATE is true if any singular vectors desired, false otherwise */
rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
np1 = *n + 1;
sqre1 = *sqre;
/* If matrix non-square upper bidiagonal, rotate to be lower
bidiagonal. The rotations are on the right. */
if (iuplo == 1 && sqre1 == 1) {
latime_1.ops += (doublereal) (*n - 1 << 3);
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
d__[i__] = r__;
e[i__] = sn * d__[i__ + 1];
d__[i__ + 1] = cs * d__[i__ + 1];
if (rotate) {
work[i__] = cs;
work[*n + i__] = sn;
}
/* L10: */
}
latime_1.ops += 6.;
dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
d__[*n] = r__;
e[*n] = 0.;
if (rotate) {
work[*n] = cs;
work[*n + *n] = sn;
}
iuplo = 2;
sqre1 = 0;
/* Update singular vectors if desired. */
if (*ncvt > 0) {
latime_1.ops += (doublereal) ((np1 - 1) * 6 * *ncvt);
dlasr_("L", "V", "F", &np1, ncvt, &work[1], &work[np1], &vt[
vt_offset], ldvt);
}
}
/* If matrix lower bidiagonal, rotate to be upper bidiagonal
by applying Givens rotations on the left. */
if (iuplo == 2) {
latime_1.ops += (doublereal) (*n - 1 << 3);
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
d__[i__] = r__;
e[i__] = sn * d__[i__ + 1];
d__[i__ + 1] = cs * d__[i__ + 1];
if (rotate) {
work[i__] = cs;
work[*n + i__] = sn;
}
/* L20: */
}
/* If matrix (N+1)-by-N lower bidiagonal, one additional
rotation is needed. */
if (sqre1 == 1) {
latime_1.ops += 6.;
dlartg_(&d__[*n], &e[*n], &cs, &sn, &r__);
d__[*n] = r__;
if (rotate) {
work[*n] = cs;
work[*n + *n] = sn;
}
}
/* Update singular vectors if desired. */
if (*nru > 0) {
if (sqre1 == 0) {
latime_1.ops += (doublereal) ((*n - 1) * 6 * *nru);
dlasr_("R", "V", "F", nru, n, &work[1], &work[np1], &u[
u_offset], ldu);
} else {
latime_1.ops += (doublereal) (*n * 6 * *nru);
dlasr_("R", "V", "F", nru, &np1, &work[1], &work[np1], &u[
u_offset], ldu);
}
}
if (*ncc > 0) {
if (sqre1 == 0) {
latime_1.ops += (doublereal) ((*n - 1) * 6 * *ncc);
dlasr_("L", "V", "F", n, ncc, &work[1], &work[np1], &c__[
c_offset], ldc);
} else {
latime_1.ops += (doublereal) (*n * 6 * *ncc);
dlasr_("L", "V", "F", &np1, ncc, &work[1], &work[np1], &c__[
c_offset], ldc);
}
}
}
/* Call DBDSQR to compute the SVD of the reduced real
N-by-N upper bidiagonal matrix. */
dbdsqr_("U", n, ncvt, nru, ncc, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[
u_offset], ldu, &c__[c_offset], ldc, &work[1], info);
/* Sort the singular values into ascending order (insertion sort on
singular values, but only one transposition per singular vector) */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Scan for smallest D(I). */
isub = i__;
smin = d__[i__];
i__2 = *n;
for (j = i__ + 1; j <= i__2; ++j) {
if (d__[j] < smin) {
isub = j;
smin = d__[j];
}
/* L30: */
}
if (isub != i__) {
/* Swap singular values and vectors. */
d__[isub] = d__[i__];
d__[i__] = smin;
if (*ncvt > 0) {
dswap_(ncvt, &vt_ref(isub, 1), ldvt, &vt_ref(i__, 1), ldvt);
}
if (*nru > 0) {
dswap_(nru, &u_ref(1, isub), &c__1, &u_ref(1, i__), &c__1);
}
if (*ncc > 0) {
dswap_(ncc, &c___ref(isub, 1), ldc, &c___ref(i__, 1), ldc);
}
}
/* L40: */
}
return 0;
/* End of DLASDQ */
} /* dlasdq_ */
#undef vt_ref
#undef u_ref
#undef c___ref
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -