⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zsteqr.c

📁 著名的LAPACK矩阵计算软件包, 是比较新的版本, 一般用到矩阵分解的朋友也许会用到
💻 C
📖 第 1 页 / 共 2 页
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    doublereal ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__0 = 0;
static integer c__1 = 1;
static integer c__2 = 2;
static doublereal c_b41 = 1.;

/* Subroutine */ int zsteqr_(char *compz, integer *n, doublereal *d__, 
	doublereal *e, doublecomplex *z__, integer *ldz, doublereal *work, 
	integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    static integer lend, jtot;
    extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal 
	    *, doublereal *, doublereal *);
    static doublereal b, c__, f, g;
    static integer i__, j, k, l, m;
    static doublereal p, r__, s;
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    extern /* Subroutine */ int zlasr_(char *, char *, char *, integer *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *);
    static integer l1;
    extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), dlaev2_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *);
    static integer lendm1, lendp1;
    extern doublereal dlapy2_(doublereal *, doublereal *);
    static integer ii;
    extern doublereal dlamch_(char *);
    static integer mm, iscale;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    static doublereal safmin;
    extern /* Subroutine */ int dlartg_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *);
    static doublereal safmax;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *, 
	    integer *);
    static integer lendsv;
    static doublereal ssfmin;
    static integer nmaxit, icompz;
    static doublereal ssfmax;
    extern /* Subroutine */ int zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
    static integer lm1, mm1, nm1;
    static doublereal rt1, rt2, eps;
    static integer lsv;
    static doublereal tst, eps2;


#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


/*  -- LAPACK routine (instrumented to count operations, version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   

       Common block to return operation count and iteration count   
       ITCNT is initialized to 0, OPS is only incremented   

    Purpose   
    =======   

    ZSTEQR computes all eigenvalues and, optionally, eigenvectors of a   
    symmetric tridiagonal matrix using the implicit QL or QR method.   
    The eigenvectors of a full or band complex Hermitian matrix can also   
    be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this   
    matrix to tridiagonal form.   

    Arguments   
    =========   

    COMPZ   (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only.   
            = 'V':  Compute eigenvalues and eigenvectors of the original   
                    Hermitian matrix.  On entry, Z must contain the   
                    unitary matrix used to reduce the original matrix   
                    to tridiagonal form.   
            = 'I':  Compute eigenvalues and eigenvectors of the   
                    tridiagonal matrix.  Z is initialized to the identity   
                    matrix.   

    N       (input) INTEGER   
            The order of the matrix.  N >= 0.   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the diagonal elements of the tridiagonal matrix.   
            On exit, if INFO = 0, the eigenvalues in ascending order.   

    E       (input/output) DOUBLE PRECISION array, dimension (N-1)   
            On entry, the (n-1) subdiagonal elements of the tridiagonal   
            matrix.   
            On exit, E has been destroyed.   

    Z       (input/output) COMPLEX*16 array, dimension (LDZ, N)   
            On entry, if  COMPZ = 'V', then Z contains the unitary   
            matrix used in the reduction to tridiagonal form.   
            On exit, if INFO = 0, then if COMPZ = 'V', Z contains the   
            orthonormal eigenvectors of the original Hermitian matrix,   
            and if COMPZ = 'I', Z contains the orthonormal eigenvectors   
            of the symmetric tridiagonal matrix.   
            If COMPZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            eigenvectors are desired, then  LDZ >= max(1,N).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))   
            If COMPZ = 'N', then WORK is not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  the algorithm has failed to find all the eigenvalues in   
                  a total of 30*N iterations; if INFO = i, then i   
                  elements of E have not converged to zero; on exit, D   
                  and E contain the elements of a symmetric tridiagonal   
                  matrix which is unitarily similar to the original   
                  matrix.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    *info = 0;

    if (lsame_(compz, "N")) {
	icompz = 0;
    } else if (lsame_(compz, "V")) {
	icompz = 1;
    } else if (lsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZSTEQR", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (icompz == 2) {
	    i__1 = z___subscr(1, 1);
	    z__[i__1].r = 1., z__[i__1].i = 0.;
	}
	return 0;
    }

/*     Determine the unit roundoff and over/underflow thresholds. */

    latime_1.ops += 6;
    eps = dlamch_("E");
/* Computing 2nd power */
    d__1 = eps;
    eps2 = d__1 * d__1;
    safmin = dlamch_("S");
    safmax = 1. / safmin;
    ssfmax = sqrt(safmax) / 3.;
    ssfmin = sqrt(safmin) / eps2;

/*     Compute the eigenvalues and eigenvectors of the tridiagonal   
       matrix. */

    if (icompz == 2) {
	zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
    }

    nmaxit = *n * 30;
    jtot = 0;

/*     Determine where the matrix splits and choose QL or QR iteration   
       for each block, according to whether top or bottom diagonal   
       element is smaller. */

    l1 = 1;
    nm1 = *n - 1;

L10:
    if (l1 > *n) {
	goto L160;
    }
    if (l1 > 1) {
	e[l1 - 1] = 0.;
    }
    if (l1 <= nm1) {
	i__1 = nm1;
	for (m = l1; m <= i__1; ++m) {
	    tst = (d__1 = e[m], abs(d__1));
	    if (tst == 0.) {
		goto L30;
	    }
	    latime_1.ops += 4;
	    if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m 
		    + 1], abs(d__2))) * eps) {
		e[m] = 0.;
		goto L30;
	    }
/* L20: */
	}
    }
    m = *n;

L30:
    l = l1;
    lsv = l;
    lend = m;
    lendsv = lend;
    l1 = m + 1;
    if (lend == l) {
	goto L10;
    }

/*     Scale submatrix in rows and columns L to LEND */

    latime_1.ops += lend - l + 1 << 1;
    i__1 = lend - l + 1;
    anorm = dlanst_("I", &i__1, &d__[l], &e[l]);
    iscale = 0;
    if (anorm == 0.) {
	goto L10;
    }
    if (anorm > ssfmax) {
	iscale = 1;
	latime_1.ops = latime_1.ops + (lend - l << 1) + 1;
	i__1 = lend - l + 1;
	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
		info);
    } else if (anorm < ssfmin) {
	iscale = 2;
	latime_1.ops = latime_1.ops + (lend - l << 1) + 1;
	i__1 = lend - l + 1;
	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
		info);
    }

/*     Choose between QL and QR iteration */

    if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
	lend = lsv;
	l = lendsv;
    }

    if (lend > l) {

/*        QL Iteration   

          Look for small subdiagonal element. */

L40:
	if (l != lend) {
	    lendm1 = lend - 1;
	    i__1 = lendm1;
	    for (m = l; m <= i__1; ++m) {
/* Computing 2nd power */
		d__2 = (d__1 = e[m], abs(d__1));
		tst = d__2 * d__2;
		latime_1.ops += 4;
		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
			+ 1], abs(d__2)) + safmin) {
		    goto L60;
		}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -