📄 ctrevc.c
字号:
#include "blaswrap.h"
/* -- translated by f2c (version 19990503).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
real ops, itcnt;
} latime_;
#define latime_1 latime_
/* Table of constant values */
static complex c_b2 = {1.f,0.f};
static integer c__1 = 1;
/* Subroutine */ int ctrevc_(char *side, char *howmny, logical *select,
integer *n, complex *t, integer *ldt, complex *vl, integer *ldvl,
complex *vr, integer *ldvr, integer *mm, integer *m, complex *work,
real *rwork, integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3, i__4, i__5;
real r__1, r__2, r__3;
complex q__1, q__2;
/* Builtin functions */
double r_imag(complex *);
void r_cnjg(complex *, complex *);
/* Local variables */
static logical allv;
static real unfl, ovfl, smin;
static logical over;
static real opst;
static integer i__, j, k;
static real scale;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
, complex *, integer *, complex *, integer *, complex *, complex *
, integer *);
static real remax;
extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
complex *, integer *);
static logical leftv, bothv, somev;
static integer ii, ki;
extern /* Subroutine */ int slabad_(real *, real *);
static integer is;
extern integer icamax_(integer *, complex *, integer *);
extern doublereal slamch_(char *);
extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
*), xerbla_(char *, integer *), clatrs_(char *, char *,
char *, char *, integer *, complex *, integer *, complex *, real *
, real *, integer *);
extern doublereal scasum_(integer *, complex *, integer *);
static logical rightv;
static real smlnum, ulp;
#define t_subscr(a_1,a_2) (a_2)*t_dim1 + a_1
#define t_ref(a_1,a_2) t[t_subscr(a_1,a_2)]
#define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1
#define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)]
#define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1
#define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)]
/* -- LAPACK routine (instrumented to count operations, version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Common block to return operation count.
OPS is only incremented, OPST is used to accumulate small
contributions to OPS to avoid roundoff error
Purpose
=======
CTREVC computes some or all of the right and/or left eigenvectors of
a complex upper triangular matrix T.
The right eigenvector x and the left eigenvector y of T corresponding
to an eigenvalue w are defined by:
T*x = w*x, y'*T = w*y'
where y' denotes the conjugate transpose of the vector y.
If all eigenvectors are requested, the routine may either return the
matrices X and/or Y of right or left eigenvectors of T, or the
products Q*X and/or Q*Y, where Q is an input unitary
matrix. If T was obtained from the Schur factorization of an
original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
right or left eigenvectors of A.
Arguments
=========
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
= 'L': compute left eigenvectors only;
= 'B': compute both right and left eigenvectors.
HOWMNY (input) CHARACTER*1
= 'A': compute all right and/or left eigenvectors;
= 'B': compute all right and/or left eigenvectors,
and backtransform them using the input matrices
supplied in VR and/or VL;
= 'S': compute selected right and/or left eigenvectors,
specified by the logical array SELECT.
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenvectors to be
computed.
If HOWMNY = 'A' or 'B', SELECT is not referenced.
To select the eigenvector corresponding to the j-th
eigenvalue, SELECT(j) must be set to .TRUE..
N (input) INTEGER
The order of the matrix T. N >= 0.
T (input/output) COMPLEX array, dimension (LDT,N)
The upper triangular matrix T. T is modified, but restored
on exit.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
VL (input/output) COMPLEX array, dimension (LDVL,MM)
On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
contain an N-by-N matrix Q (usually the unitary matrix Q of
Schur vectors returned by CHSEQR).
On exit, if SIDE = 'L' or 'B', VL contains:
if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
VL is lower triangular. The i-th column
VL(i) of VL is the eigenvector corresponding
to T(i,i).
if HOWMNY = 'B', the matrix Q*Y;
if HOWMNY = 'S', the left eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VL, in the same order as their
eigenvalues.
If SIDE = 'R', VL is not referenced.
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= max(1,N) if
SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
VR (input/output) COMPLEX array, dimension (LDVR,MM)
On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
contain an N-by-N matrix Q (usually the unitary matrix Q of
Schur vectors returned by CHSEQR).
On exit, if SIDE = 'R' or 'B', VR contains:
if HOWMNY = 'A', the matrix X of right eigenvectors of T;
VR is upper triangular. The i-th column
VR(i) of VR is the eigenvector corresponding
to T(i,i).
if HOWMNY = 'B', the matrix Q*X;
if HOWMNY = 'S', the right eigenvectors of T specified by
SELECT, stored consecutively in the columns
of VR, in the same order as their
eigenvalues.
If SIDE = 'L', VR is not referenced.
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= max(1,N) if
SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
M (output) INTEGER
The number of columns in the arrays VL and/or VR actually
used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
is set to N. Each selected eigenvector occupies one
column.
WORK (workspace) COMPLEX array, dimension (2*N)
RWORK (workspace) REAL array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Further Details
===============
The algorithm used in this program is basically backward (forward)
substitution, with scaling to make the the code robust against
possible overflow.
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x| + |y|.
=====================================================================
Decode and test the input parameters
Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1 * 1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1 * 1;
vr -= vr_offset;
--work;
--rwork;
/* Function Body */
bothv = lsame_(side, "B");
rightv = lsame_(side, "R") || bothv;
leftv = lsame_(side, "L") || bothv;
allv = lsame_(howmny, "A");
over = lsame_(howmny, "B");
somev = lsame_(howmny, "S");
/* Set M to the number of columns required to store the selected
eigenvectors. */
if (somev) {
*m = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (select[j]) {
++(*m);
}
/* L10: */
}
} else {
*m = *n;
}
*info = 0;
if (! rightv && ! leftv) {
*info = -1;
} else if (! allv && ! over && ! somev) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*ldt < max(1,*n)) {
*info = -6;
} else if (*ldvl < 1 || leftv && *ldvl < *n) {
*info = -8;
} else if (*ldvr < 1 || rightv && *ldvr < *n) {
*info = -10;
} else if (*mm < *m) {
*info = -11;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CTREVC", &i__1);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
/* **
Initialize */
opst = 0.f;
/* **
Set the constants to control overflow. */
unfl = slamch_("Safe minimum");
ovfl = 1.f / unfl;
slabad_(&unfl, &ovfl);
ulp = slamch_("Precision");
smlnum = unfl * (*n / ulp);
/* Store the diagonal elements of T in working array WORK. */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -