⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dlaed2.c

📁 著名的LAPACK矩阵计算软件包, 是比较新的版本, 一般用到矩阵分解的朋友也许会用到
💻 C
📖 第 1 页 / 共 2 页
字号:
    jmax = idamax_(n, &d__[1], &c__1);
    eps = dlamch_("Epsilon");
    latime_1.ops += 2;
/* Computing MAX */
    d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))
	    ;
    tol = eps * 8. * max(d__3,d__4);

/*     If the rank-1 modifier is small enough, no more needs to be done   
       except to reorganize Q so that its columns correspond with the   
       elements in D. */

    latime_1.ops += 1;
    if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
	*k = 0;
	iq2 = 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__ = indx[j];
	    dcopy_(n, &q_ref(1, i__), &c__1, &q2[iq2], &c__1);
	    dlamda[j] = d__[i__];
	    iq2 += *n;
/* L40: */
	}
	dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
	dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
	goto L190;
    }

/*     If there are multiple eigenvalues then the problem deflates.  Here   
       the number of equal eigenvalues are found.  As each equal   
       eigenvalue is found, an elementary reflector is computed to rotate   
       the corresponding eigensubspace so that the corresponding   
       components of Z are zero in this new basis. */

    i__1 = *n1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	coltyp[i__] = 1;
/* L50: */
    }
    i__1 = *n;
    for (i__ = n1p1; i__ <= i__1; ++i__) {
	coltyp[i__] = 3;
/* L60: */
    }


    *k = 0;
    k2 = *n + 1;
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	nj = indx[j];
	latime_1.ops += 1;
	if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    coltyp[nj] = 4;
	    indxp[k2] = nj;
	    if (j == *n) {
		goto L100;
	    }
	} else {
	    pj = nj;
	    goto L80;
	}
/* L70: */
    }
L80:
    ++j;
    nj = indx[j];
    if (j > *n) {
	goto L100;
    }
    latime_1.ops += 1;
    if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	coltyp[nj] = 4;
	indxp[k2] = nj;
    } else {

/*        Check if eigenvalues are close enough to allow deflation. */

	s = z__[pj];
	c__ = z__[nj];

/*        Find sqrt(a**2+b**2) without overflow or   
          destructive underflow. */

	latime_1.ops += 10;
	tau = dlapy2_(&c__, &s);
	t = d__[nj] - d__[pj];
	c__ /= tau;
	s = -s / tau;
	if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {

/*           Deflation is possible. */

	    z__[nj] = tau;
	    z__[pj] = 0.;
	    if (coltyp[nj] != coltyp[pj]) {
		coltyp[nj] = 2;
	    }
	    coltyp[pj] = 4;
	    latime_1.ops += *n * 6;
	    drot_(n, &q_ref(1, pj), &c__1, &q_ref(1, nj), &c__1, &c__, &s);
	    latime_1.ops += 10;
/* Computing 2nd power */
	    d__1 = c__;
/* Computing 2nd power */
	    d__2 = s;
	    t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
/* Computing 2nd power */
	    d__1 = s;
/* Computing 2nd power */
	    d__2 = c__;
	    d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);
	    d__[pj] = t;
	    --k2;
	    i__ = 1;
L90:
	    if (k2 + i__ <= *n) {
		if (d__[pj] < d__[indxp[k2 + i__]]) {
		    indxp[k2 + i__ - 1] = indxp[k2 + i__];
		    indxp[k2 + i__] = pj;
		    ++i__;
		    goto L90;
		} else {
		    indxp[k2 + i__ - 1] = pj;
		}
	    } else {
		indxp[k2 + i__ - 1] = pj;
	    }
	    pj = nj;
	} else {
	    ++(*k);
	    dlamda[*k] = d__[pj];
	    w[*k] = z__[pj];
	    indxp[*k] = pj;
	    pj = nj;
	}
    }
    goto L80;
L100:

/*     Record the last eigenvalue. */

    ++(*k);
    dlamda[*k] = d__[pj];
    w[*k] = z__[pj];
    indxp[*k] = pj;

/*     Count up the total number of the various types of columns, then   
       form a permutation which positions the four column types into   
       four uniform groups (although one or more of these groups may be   
       empty). */

    for (j = 1; j <= 4; ++j) {
	ctot[j - 1] = 0;
/* L110: */
    }
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	ct = coltyp[j];
	++ctot[ct - 1];
/* L120: */
    }

/*     PSM(*) = Position in SubMatrix (of types 1 through 4) */

    psm[0] = 1;
    psm[1] = ctot[0] + 1;
    psm[2] = psm[1] + ctot[1];
    psm[3] = psm[2] + ctot[2];
    *k = *n - ctot[3];

/*     Fill out the INDXC array so that the permutation which it induces   
       will place all type-1 columns first, all type-2 columns next,   
       then all type-3's, and finally all type-4's. */

    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	js = indxp[j];
	ct = coltyp[js];
	indx[psm[ct - 1]] = js;
	indxc[psm[ct - 1]] = j;
	++psm[ct - 1];
/* L130: */
    }

/*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA   
       and Q2 respectively.  The eigenvalues/vectors which were not   
       deflated go into the first K slots of DLAMDA and Q2 respectively,   
       while those which were deflated go into the last N - K slots. */

    i__ = 1;
    iq1 = 1;
    iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
    i__1 = ctot[0];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(n1, &q_ref(1, js), &c__1, &q2[iq1], &c__1);
	z__[i__] = d__[js];
	++i__;
	iq1 += *n1;
/* L140: */
    }

    i__1 = ctot[1];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(n1, &q_ref(1, js), &c__1, &q2[iq1], &c__1);
	dcopy_(&n2, &q_ref(*n1 + 1, js), &c__1, &q2[iq2], &c__1);
	z__[i__] = d__[js];
	++i__;
	iq1 += *n1;
	iq2 += n2;
/* L150: */
    }

    i__1 = ctot[2];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(&n2, &q_ref(*n1 + 1, js), &c__1, &q2[iq2], &c__1);
	z__[i__] = d__[js];
	++i__;
	iq2 += n2;
/* L160: */
    }

    iq1 = iq2;
    i__1 = ctot[3];
    for (j = 1; j <= i__1; ++j) {
	js = indx[i__];
	dcopy_(n, &q_ref(1, js), &c__1, &q2[iq2], &c__1);
	iq2 += *n;
	z__[i__] = d__[js];
	++i__;
/* L170: */
    }

/*     The deflated eigenvalues and their corresponding vectors go back   
       into the last N - K slots of D and Q respectively. */

    dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q_ref(1, *k + 1), ldq);
    i__1 = *n - *k;
    dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);

/*     Copy CTOT into COLTYP for referencing in DLAED3. */

    for (j = 1; j <= 4; ++j) {
	coltyp[j] = ctot[j - 1];
/* L180: */
    }

L190:
    return 0;

/*     End of DLAED2 */

} /* dlaed2_ */

#undef q_ref


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -