⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 slaed9.c

📁 著名的LAPACK矩阵计算软件包, 是比较新的版本, 一般用到矩阵分解的朋友也许会用到
💻 C
字号:
#include "blaswrap.h"
/*  -- translated by f2c (version 19990503).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "f2c.h"

/* Common Block Declarations */

struct {
    real ops, itcnt;
} latime_;

#define latime_1 latime_

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int slaed9_(integer *k, integer *kstart, integer *kstop, 
	integer *n, real *d__, real *q, integer *ldq, real *rho, real *dlamda,
	 real *w, real *s, integer *lds, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2;
    real r__1;

    /* Builtin functions */
    double sqrt(doublereal), r_sign(real *, real *);

    /* Local variables */
    static real temp;
    extern doublereal snrm2_(integer *, real *, integer *);
    static integer i__, j;
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
	    integer *), slaed4_(integer *, integer *, real *, real *, real *, 
	    real *, real *, integer *);
    extern doublereal slamc3_(real *, real *);
    extern /* Subroutine */ int xerbla_(char *, integer *);


#define q_ref(a_1,a_2) q[(a_2)*q_dim1 + a_1]
#define s_ref(a_1,a_2) s[(a_2)*s_dim1 + a_1]


/*  -- LAPACK routine (instrumented to count operations, version 3.0) --   
       Univ. of Tennessee, Oak Ridge National Lab, Argonne National Lab,   
       Courant Institute, NAG Ltd., and Rice University   
       September 30, 1994   

       Common block to return operation count and iteration count   
       ITCNT is unchanged, OPS is only incremented   

    Purpose   
    =======   

    SLAED9 finds the roots of the secular equation, as defined by the   
    values in D, Z, and RHO, between KSTART and KSTOP.  It makes the   
    appropriate calls to SLAED4 and then stores the new matrix of   
    eigenvectors for use in calculating the next level of Z vectors.   

    Arguments   
    =========   

    K       (input) INTEGER   
            The number of terms in the rational function to be solved by   
            SLAED4.  K >= 0.   

    KSTART  (input) INTEGER   
    KSTOP   (input) INTEGER   
            The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP   
            are to be computed.  1 <= KSTART <= KSTOP <= K.   

    N       (input) INTEGER   
            The number of rows and columns in the Q matrix.   
            N >= K (delation may result in N > K).   

    D       (output) REAL array, dimension (N)   
            D(I) contains the updated eigenvalues   
            for KSTART <= I <= KSTOP.   

    Q       (workspace) REAL array, dimension (LDQ,N)   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.  LDQ >= max( 1, N ).   

    RHO     (input) REAL   
            The value of the parameter in the rank one update equation.   
            RHO >= 0 required.   

    DLAMDA  (input) REAL array, dimension (K)   
            The first K elements of this array contain the old roots   
            of the deflated updating problem.  These are the poles   
            of the secular equation.   

    W       (input) REAL array, dimension (K)   
            The first K elements of this array contain the components   
            of the deflation-adjusted updating vector.   

    S       (output) REAL array, dimension (LDS, K)   
            Will contain the eigenvectors of the repaired matrix which   
            will be stored for subsequent Z vector calculation and   
            multiplied by the previously accumulated eigenvectors   
            to update the system.   

    LDS     (input) INTEGER   
            The leading dimension of S.  LDS >= max( 1, K ).   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = 1, an eigenvalue did not converge   

    Further Details   
    ===============   

    Based on contributions by   
       Jeff Rutter, Computer Science Division, University of California   
       at Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1 * 1;
    q -= q_offset;
    --dlamda;
    --w;
    s_dim1 = *lds;
    s_offset = 1 + s_dim1 * 1;
    s -= s_offset;

    /* Function Body */
    *info = 0;

    if (*k < 0) {
	*info = -1;
    } else if (*kstart < 1 || *kstart > max(1,*k)) {
	*info = -2;
    } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) {
	*info = -3;
    } else if (*n < *k) {
	*info = -4;
    } else if (*ldq < max(1,*k)) {
	*info = -7;
    } else if (*lds < max(1,*k)) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("SLAED9", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*k == 0) {
	return 0;
    }

/*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can   
       be computed with high relative accuracy (barring over/underflow).   
       This is a problem on machines without a guard digit in   
       add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).   
       The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),   
       which on any of these machines zeros out the bottommost   
       bit of DLAMDA(I) if it is 1; this makes the subsequent   
       subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation   
       occurs. On binary machines with a guard digit (almost all   
       machines) it does not change DLAMDA(I) at all. On hexadecimal   
       and decimal machines with a guard digit, it slightly   
       changes the bottommost bits of DLAMDA(I). It does not account   
       for hexadecimal or decimal machines without guard digits   
       (we know of none). We use a subroutine call to compute   
       2*DLAMBDA(I) to prevent optimizing compilers from eliminating   
       this code. */

    latime_1.ops += *n << 1;
    i__1 = *n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	dlamda[i__] = slamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
/* L10: */
    }

    i__1 = *kstop;
    for (j = *kstart; j <= i__1; ++j) {
	slaed4_(k, &j, &dlamda[1], &w[1], &q_ref(1, j), rho, &d__[j], info);

/*        If the zero finder fails, the computation is terminated. */

	if (*info != 0) {
	    goto L120;
	}
/* L20: */
    }

    if (*k == 1 || *k == 2) {
	i__1 = *k;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = *k;
	    for (j = 1; j <= i__2; ++j) {
		s_ref(j, i__) = q_ref(j, i__);
/* L30: */
	    }
/* L40: */
	}
	goto L120;
    }

/*     Compute updated W. */

    scopy_(k, &w[1], &c__1, &s[s_offset], &c__1);

/*     Initialize W(I) = Q(I,I) */

    i__1 = *ldq + 1;
    scopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
    latime_1.ops = latime_1.ops + *k * 3 * (*k - 1) + *k;
    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	i__2 = j - 1;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    w[i__] *= q_ref(i__, j) / (dlamda[i__] - dlamda[j]);
/* L50: */
	}
	i__2 = *k;
	for (i__ = j + 1; i__ <= i__2; ++i__) {
	    w[i__] *= q_ref(i__, j) / (dlamda[i__] - dlamda[j]);
/* L60: */
	}
/* L70: */
    }
    i__1 = *k;
    for (i__ = 1; i__ <= i__1; ++i__) {
	r__1 = sqrt(-w[i__]);
	w[i__] = r_sign(&r__1, &s_ref(i__, 1));
/* L80: */
    }

/*     Compute eigenvectors of the modified rank-1 modification. */

    latime_1.ops += (*k << 2) * *k;
    i__1 = *k;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *k;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    q_ref(i__, j) = w[i__] / q_ref(i__, j);
/* L90: */
	}
	temp = snrm2_(k, &q_ref(1, j), &c__1);
	i__2 = *k;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    s_ref(i__, j) = q_ref(i__, j) / temp;
/* L100: */
	}
/* L110: */
    }

L120:
    return 0;

/*     End of SLAED9 */

} /* slaed9_ */

#undef s_ref
#undef q_ref


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -