📄 exprtmpl.html
字号:
<td>0</td>
<td>Returns a number between a up to and including b.</td>
</tr>
<tr>
<td>srand(a)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Seeds the random number generator with a value.<br>
Return value is unknown</td>
</tr>
<tr>
<td>randomize()</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Seed the random number generator with a value
based on the current time.<br>
Return value is unknown</td>
</tr>
<tr>
<td>deg(a)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Returns a radians converted to degrees.<br>
deg(3.14) returns around 179.909</td>
</tr>
<tr>
<td>rad(a)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Returns a degrees converted to radians.<br>
rad(180) returns around 3.142</td>
</tr>
<tr>
<td>recttopolr(x,y)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns the polar radius of the rectangular co-ordinates.<br>
recttopolr(2,3) returns around 3.606</td>
</tr>
<tr>
<td>recttopola(x,y)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns the polar angle (0...2PI) in radians of the rectangular co-ordinates.<br>
recttopola(2,3) returns around 0.588</td>
</tr>
<tr>
<td>poltorectx(r,a)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns the x rectangular co-ordinate of the polar
co-ordinates.<br>
poltorectx(3,1.5) returns around 0.212</td>
</tr>
<tr>
<td>poltorecty(r,a)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns the y rectangular co-ordinate of the polar
co-ordinates.<br>
poltorecty(3,1.5) returns around 2.992</td>
</tr>
<tr>
<td>if(c,t,f)</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>Evaluates and returns t if c is not 0.0.
Else evaluates and returns f.<br>
if(0.1,2.1,3.9) returns 2.1</td>
</tr>
<tr>
<td>select(c,n,z[,p])</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>Returns n if c is less than 0.0. Returns z
if c is 0.0. If c is greater than 0.0 and only
three arguments were passed, returns z. If c
is greater than 0.0 and four arguments were passed,
return p.<br>
select(3,1,4,5) returns 5</td>
</tr>
<tr>
<td>equal(a,b)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns 1.0 if a is equal to b. Else returns 0.0<br>
equal(3,2) returns 0.0</td>
</tr>
<tr>
<td>above(a,b)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns 1.0 if a is above b. Else returns 0.0<br>
above(3,2) returns 1.0</td>
</tr>
<tr>
<td>below(a,b)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns 1.0 if a is below b. Else returns 0.0<br>
below(3,2) returns 0.0</td>
</tr>
<tr>
<td>avg(a,...)</td>
<td>1</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>Returns the average of the values passed.<br>
avg(3,3,6) returns 4</td>
</tr>
<tr>
<td>clip(v,min,max)</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>Clips v to the range from min to max. If v is less
than min, it returns min. If v is greater than
max it returns max. Otherwise it returns v.<br>
clip(3,1,2) returns 2</td>
</tr>
<tr>
<td>clamp(v,min,max)</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>Clamps v to the range from min to max, looping
if needed.<br>
clamp(8.2,1.3,4.7) returns 1.4</td>
</tr>
<tr>
<td>pntchange(side1old, side2old, side1new, side2new, oldpnt)</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>This is used to translate points from different
scale. It works no matter the orientation as long
as the sides are lined up correctly.<br>
pntchange(-1,1,0,480,-0.5) returns 120 (x example)<br>
pntchange(-1,1,480,0,-0.5) returns 360 (y example)</td>
</tr>
<tr>
<td>poly(x,c1,...)</td>
<td>2</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>This function calculates the polynomial. x is the value
to use in the polynomial. c1 and on are the coefficients.<br>
poly(4,6,9,3,1,4) returns 2168<br>
same as 6*4<sup>4</sup> + 9*4<sup>3</sup> + 3*4<sup>2</sup> + 1*4<sup>1</sup> + 4*4<sup>0</sup></td>
</tr>
<tr>
<td>and(a,b)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns 0.0 if either a or b are 0.0 Else returns 1.0<br>
and(2.1,0.0) returns 0.0</td>
</tr>
<tr>
<td>or(a,b)</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Returns 0.0 if both a and b are 0.0 Else returns 1.0<br>
or(2.1,0.0) returns 1.0</td>
</tr>
<tr>
<td>not(a)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Returns 1.0 if a is 0.0 Else returns 0.0<br>
not(0.3) returns 0.0</td>
</tr>
<tr>
<td>for(init,test,inc,a1,...)</td>
<td>4</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>This function acts like a for loop in C. First init is
evaluated. Then test is evaluated. As long as the
test is not 0.0, the action statements (a1 to an) are
evaluated, the inc statement is evaluated, and the test
is evaluated again. The result is the result of the
final action statement.<br>
for(x=0,below(x,11),x=x+1,y=y+x) returns 55.0 (if y was
initially 0.0)</td>
</tr>
<tr>
<td>many(expr,...)</td>
<td>1</td>
<td>None</td>
<td>0</td>
<td>0</td>
<td>This function treats many subexpressions as a single object
(function). It is mainly for the 'for' function.<br>
for(many(j=5,k=1),above(j*k,0.001),many(j=j+5,k=k/2),0)</td>
</tr>
</table>
</blockquote>
</div>
<div align="left" class="container">
<h2><a name="InternalConst">ExprEval Internal Constants</a></h2>
<blockquote>
The following constants are provided with ExprEval:
<table align="center" border="1" width="75%">
<tr>
<td align="center"><b>Constant</b></td>
<td align="center"><b>Math Form</b></td>
<td align="center"><b>Value</b></td>
</tr>
<tr>
<td>M_E</td>
<td>e</td>
<td>2.7182818284590452354</td>
</tr>
<tr>
<td>M_LOG2E</td>
<td>log<sub>2</sub>(e)</td>
<td>1.4426950408889634074</td>
</tr>
<tr>
<td>M_LOG10E</td>
<td>log<sub>10</sub>(e)</td>
<td>0.43429448190325182765</td>
</tr>
<tr>
<td>M_LN2</td>
<td>ln(2)</td>
<td>0.69314718055994530942</td>
</tr>
<tr>
<td>M_LN10</td>
<td>ln(10)</td>
<td>2.30258509299404568402</td>
</tr>
<tr>
<td>M_PI</td>
<td>π</td>
<td>3.14159265358979323846</td>
</tr>
<tr>
<td>M_PI_2</td>
<td>π/2</td>
<td>1.57079632679489661923</td>
</tr>
<tr>
<td>M_PI_4</td>
<td>π/4</td>
<td>0.78539816339744830962</td>
</tr>
<tr>
<td>M_1_PI</td>
<td>1/π</td>
<td>0.31830988618379067154</td>
</tr>
<tr>
<td>M_2_PI</td>
<td>2/π</td>
<td>0.63661977236758134308</td>
</tr>
<tr>
<td>M_1_SQRTPI</td>
<td>1/√(π)</td>
<td>0.56418958354776</td>
</tr>
<tr>
<td>M_2_SQRTPI</td>
<td>2/√(π)</td>
<td>1.12837916709551257390</td>
</tr>
<tr>
<td>M_SQRT2</td>
<td>√(2)</td>
<td>1.41421356237309504880</td>
</tr>
<tr>
<td>M_1_SQRT2</td>
<td>1/√(2)</td>
<td>0.70710678118654752440</td>
</tr>
</table>
</blockquote>
</div>
<div align="left" class="container">
<h2><a name="AppFunc">Application Internal Functions</a></h2>
<blockquote>
Application defined expression functions go here.
<table align="center" border="1" width="75%">
<tr>
<td align="center"><b>Function</b></td>
<td align="center"><b>Min. Args</b></td>
<td align="center"><b>Max. Args</b></td>
<td align="center"><b>Min. Ref Args</b></td>
<td align="center"><b>Max. Ref Args</b></td>
<td align="center"><b>Result/Comment</b></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</table>
</blockquote>
</div>
<div align="left" class="container">
<h2><a name="AppConst">Application Internal Constants</a></h2>
<blockquote>
Application defined expression constants go here.
<table align="center" border="1" width="75%">
<tr>
<td align="center"><b>Constant</b></td>
<td align="center"><b>Math Form</b></td>
<td align="center"><b>Value</b></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</table>
</blockquote>
</div>
<div align="left" class="container">
<h2><a name="AppVar">Application Internal Variables</a></h2>
<blockquote>
Application defined expression variables go here.
<table align="center" border="1" width="75%">
<tr>
<td align="center"><b>Variable</b></td>
<td align="center"><b>Math Form</b></td>
<td align="center"><b>Value</b></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</table>
</blockquote>
</div>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -