⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 licsdetector.hpp

📁 gps源代码
💻 HPP
字号:
/** * @file LICSDetector.hpp * This is a class to detect cycle slips using LI observables. */#ifndef LICSDETECTOR_GPSTK#define LICSDETECTOR_GPSTK//============================================================================////  This file is part of GPSTk, the GPS Toolkit.////  The GPSTk is free software; you can redistribute it and/or modify//  it under the terms of the GNU Lesser General Public License as published//  by the Free Software Foundation; either version 2.1 of the License, or//  any later version.////  The GPSTk is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the//  GNU Lesser General Public License for more details.////  You should have received a copy of the GNU Lesser General Public//  License along with GPSTk; if not, write to the Free Software Foundation,//  Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA//  //  Dagoberto Salazar - gAGE ( http://www.gage.es ). 2007////============================================================================#include "DataStructures.hpp"namespace gpstk{    /** @addtogroup GPSsolutions */    //@{    /** This is a class to detect cycle slips using LI observables.     * This class is meant to be used with the GNSS data structures objects     * found in "DataStructures" class.     *     * A typical way to use this class follows:     *     * @code     *   RinexObsStream rin("ebre0300.02o");     *     *   gnssRinex gRin;     *   ComputeLI getLI;     *   LICSDetector markCSLI;     *     *   while(rin >> gRin) {     *      gRin >> getLI >> markCSLI;     *   }     * @endcode     *     * The "LICSDetector" object will visit every satellite in the GNSS data     * structure that is "gRin" and will decide if a cycle slip has happened in the     * given observable.     *     * The algorithm will use LI observables, and the LLI1 and LLI2 indexes.     * The result (a 0 if a cycle slip is found, 1 otherwise) will be stored in the     * data structure both as the CSL1 and CSL2 indexes.     *     * This algorithm will use some values as maximum interval of time between     * two successive epochs, minimum threshold for declaring cycle slip and LI     * combination limit drift.     *      * The default values are usually fine, but nevertheless you may change them      * with the appropriate methods. The former is of special importance for the     * maximum interval time, that should be adjusted to your sampling rate. By     * default it is 61 seconds, adapted to 30 seconds per sample RINEX files.     *     * When used with the ">>" operator, this class returns the same incoming     * data structure with the cycle slip indexes inserted along their corresponding     * satellites. Be warned that if a given satellite does not have the      * observations required, it will be summarily deleted from the data     * structure.     *     * Be aware that some combinations of cycle slips in L1 and L2 may result in     * a false negative when using a cycle slip detector based on LI. Therefore,     * to be on the safe side you should complement this with another kind of     * detector, such as one based on the Melbourne-Wubbena combination.     *     * @sa MWCSDetector.hpp for more information.     *     * \warning Cycle slip detectors are objets that store their internal state,     * so you MUST NOT use the SAME object to process DIFFERENT data streams.     *     */        class LICSDetector    {    public:        /// Default constructor, setting default parameters.        LICSDetector() : obsType(TypeID::LI), lliType1(TypeID::LLI1), lliType2(TypeID::LLI2), resultType1(TypeID::CSL1), resultType2(TypeID::CSL2), deltaTMax(61.0), minThreshold(0.04), LIDrift(0.002), useLLI(true) {};        /** Common constructor         *         * @param mThr          Minimum threshold for declaring cycle slip, in meters.         * @param drift         LI combination limit drift, in meters/second.         * @param dtMax         Maximum interval of time allowed between two successive epochs, in seconds.         */        LICSDetector(const double& mThr, const double& drift, const double& dtMax = 61.0, const bool& use = true) : obsType(TypeID::LI), lliType1(TypeID::LLI1), lliType2(TypeID::LLI2), resultType1(TypeID::CSL1), resultType2(TypeID::CSL2), useLLI(use)        {            setDeltaTMax(dtMax);            setMinThreshold(mThr);            setLIDrift(drift);        };        /** Returns a satTypeValueMap object, adding the new data generated when calling this object.         *         * @param epoch     Time of observations.         * @param gData     Data object holding the data.         * @param epochflag Epoch flag.         */        virtual satTypeValueMap& Detect(const DayTime& epoch, satTypeValueMap& gData, const short& epochflag=0)        {            double value1(0.0);            double lli1(0.0);            double lli2(0.0);            SatIDSet satRejectedSet;            // Loop through all the satellites            satTypeValueMap::iterator it;            for (it = gData.begin(); it != gData.end(); ++it)             {                try                {                    // Try to extract the values                    value1 = (*it).second(obsType);                }                catch(...)                {                    // If some value is missing, then schedule this satellite for removal                    satRejectedSet.insert( (*it).first );                    continue;                }                if (useLLI)                {                    try                    {                        // Try to get the LLI1 index                        lli1  = (*it).second(lliType1);                    }                    catch(...)                    {                        // If LLI #1 is not found, set it to zero                        // You REALLY want to have BOTH LLI indexes properly set                        lli1 = 0.0;                    }                    try                    {                        // Try to get the LLI2 index                        lli2  = (*it).second(lliType2);                    }                    catch(...)                    {                        // If LLI #2 is not found, set it to zero                        // You REALLY want to have BOTH LLI indexes properly set                        lli2 = 0.0;                    }                }                // If everything is OK, then get the new values inside the structure                // This way of doing it allows concatenation of several different cycle slip detectors                (*it).second[resultType1] += getDetection(epoch, (*it).first, (*it).second, epochflag, value1, lli1, lli2);                if ( (*it).second[resultType1] > 1.0 ) (*it).second[resultType1] = 1.0;                // We will mark both cycle slip flags                (*it).second[resultType2] = (*it).second[resultType1];            }            // Remove satellites with missing data            gData.removeSatID(satRejectedSet);            return gData;        };        /** Method to set the maximum interval of time allowed between two successive epochs.         * @param maxDelta      Maximum interval of time, in seconds         */        virtual void setDeltaTMax(const double& maxDelta)        {            // Don't allow delta times less than or equal to 0            if (maxDelta > 0.0) deltaTMax = maxDelta; else deltaTMax = 61.0;        };        /// Method to get the maximum interval of time allowed between two successive epochs, in seconds.        virtual double getDeltaTMax() const        {           return deltaTMax;        };        /** Method to set the minimum threshold for cycle slip detection, in meters.         * @param mThr      Minimum threshold for cycle slip detection, in meters.         */        virtual void setMinThreshold(const double& mThr)        {            // Don't allow thresholds less than 0            if (mThr < 0.0) minThreshold = 0.04; else minThreshold = mThr;        };        /// Method to get the minimum threshold for cycle slip detection, in meters.        virtual double getMinThreshold() const        {           return minThreshold;        };        /** Method to set the LI combination limit drift, in meters/second         * @param drift     LI combination limit drift, in meters/second.         */        virtual void setLIDrift(const double& drift)        {            // Don't allow drift less than or equal to 0            if (drift > 0.0) LIDrift = drift; else LIDrift = 0.002;        };        /// Method to get the minimum threshold for cycle slip detection, in meters.        virtual double getLIDrift() const        {           return LIDrift;        };        /** Method to set whether the LLI indexes will be used as an aid or not.         * @param use   Boolean value enabling/disabling LLI check         */        virtual void setUseLLI(const bool& use)        {            useLLI = use;        };        /// Method to know if the LLI check is enabled or disabled.        virtual bool getUseLLI() const        {           return useLLI;        };        /** Returns a gnnsSatTypeValue object, adding the new data generated when calling this object.         *         * @param gData    Data object holding the data.         */        virtual gnssSatTypeValue& Detect(gnssSatTypeValue& gData)        {            (*this).Detect(gData.header.epoch, gData.body);            return gData;        };        /** Returns a gnnsRinex object, adding the new data generated when calling this object.         *         * @param gData    Data object holding the data.         */        virtual gnssRinex& Detect(gnssRinex& gData)        {            (*this).Detect(gData.header.epoch, gData.body, gData.header.epochFlag);            return gData;        };        /// Destructor        virtual ~LICSDetector() {};    private:        /// Type of code.        TypeID obsType;        /// Type of LLI1 record.        TypeID lliType1;        /// Type of LLI2 record.        TypeID lliType2;        /// Type of result #1.        TypeID resultType1;        /// Type of result #2.        TypeID resultType2;        /// Maximum interval of time allowed between two successive epochs, in seconds.        double deltaTMax;        /// Minimum threshold for declaring cycle slip, in meters.        double minThreshold;        /// LI combination limit drift, in meters/second.        double LIDrift;        /// This field tells whether to use or ignore the LLI indexes as an aid.         bool useLLI;        /// A structure used to store filter data for a SV.        struct filterData        {            // Default constructor initializing the data in the structure            filterData() : formerEpoch(DayTime::BEGINNING_OF_TIME), windowSize(0), formerLI(0.0), formerBias(0.0), formerDeltaT(1.0) {};            DayTime formerEpoch;    ///< The previous epoch time stamp.            int windowSize;         ///< Size of current window, in samples.            double formerLI;        ///< Value of the previous LI observable.            double formerBias;      ///< Previous bias (LI_1 - LI_0).            double formerDeltaT;    ///< Previous time difference, in seconds.        };        /// Map holding the information regarding every satellite        std::map<SatID, filterData> LIData;        /** Returns a satTypeValueMap object, adding the new data generated when calling this object.         *         * @param epoch     Time of observations.         * @param sat       SatID.         * @param tvMap     Data structure of TypeID and values.         * @param epochflag Epoch flag.         * @param li        Current LI observation value.         * @param lli1      LLI1 index.         * @param lli2      LLI2 index.         */        virtual double getDetection(const DayTime& epoch, const SatID& sat, typeValueMap& tvMap, const short& epochflag, const double& li, const double& lli1, const double& lli2)        {            bool reportCS(false);            double currentDeltaT(0.0); // Difference between current and former epochs, in sec            double currentBias(0.0);   // Difference between current and former LI values            double deltaLimit(0.0);    // Limit to declare cycle slip            double delta(0.0);            double tempLLI1(0.0);            double tempLLI2(0.0);            // Get the difference between current epoch and former epoch, in seconds            currentDeltaT = ( epoch.MJDdate() - LIData[sat].formerEpoch.MJDdate() ) * DayTime::SEC_DAY;            // Store current epoch as former epoch            LIData[sat].formerEpoch = epoch;            currentBias = li - LIData[sat].formerLI;   // Current value of LI difference            // Increment size of window            ++LIData[sat].windowSize;            // Check if receiver already declared cycle slip or too much time has elapsed            // Note: If tvMap(lliType1) or tvMap(lliType2) don't exist, then 0 will be returned and those tests will pass            if ( (tvMap(lliType1)==1.0) || (tvMap(lliType1)==3.0) || (tvMap(lliType1)==5.0) || (tvMap(lliType1)==7.0) ) tempLLI1 = 1.0;            if ( (tvMap(lliType2)==1.0) || (tvMap(lliType2)==3.0) || (tvMap(lliType2)==5.0) || (tvMap(lliType2)==7.0) ) tempLLI2 = 1.0;            if ( (epochflag==1) || (epochflag==6) || (tempLLI1==1.0) || (tempLLI2==1.0) || (currentDeltaT > deltaTMax) )            {                LIData[sat].windowSize = 0;      // We reset the filter with this                reportCS = true;            }            if (LIData[sat].windowSize > 1)            {                deltaLimit = minThreshold + std::abs(LIDrift*currentDeltaT);                // Compute a linear interpolation and compute LI_predicted - LI_current                delta = std::abs(currentBias - LIData[sat].formerBias*currentDeltaT/LIData[sat].formerDeltaT);                if (delta > deltaLimit)                {                    LIData[sat].windowSize = 0;      // We reset the filter with this                    reportCS = true;                }            }            // Let's prepare for the next time            LIData[sat].formerLI = li;            LIData[sat].formerBias = currentBias;            LIData[sat].formerDeltaT = currentDeltaT;                           if (reportCS) return 1.0; else return 0.0;        };   }; // end class LICSDetector       /// Input operator from gnssSatTypeValue to LICSDetector.    inline gnssSatTypeValue& operator>>(gnssSatTypeValue& gData, LICSDetector& liD)    {            liD.Detect(gData);            return gData;    }    /// Input operator from gnssRinex to LICSDetector.    inline gnssRinex& operator>>(gnssRinex& gData, LICSDetector& liD)    {            liD.Detect(gData);            return gData;    }      //@}   }#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -