📄 weight.m
字号:
function [w, dwdx, dwdxx] = Weight(type, para, di, dmi)
% EVALUATE WEIGHT FUNCTION
%
% SYNTAX: [w, dwdr, dwdrr] = GaussWeight(type, para, di, dmi)
%
% INPUT PARAMETERS
% type - Type of weight function
% para - Weight function parameter
% di - Distance
% dmi - Support size
% OUTPUT PARAMETERS
% w - Value of weight function at r
% dwdx - Value of first order derivative of weight function with respect to x at r
% dwdxx- Value of Second order derivative of weight function with respect to x at r
%
r = abs(di) / dmi;
if (di >= 0.0)
drdx = 1.0/dmi;
else
drdx = -1.0/dmi;
end
% EVALUATE WEIGHT FUNCTION AND ITS FIRST AND SECOND ORDER OF DERIVATIVES WITH RESPECT r AT r
if (type == 'GAUSS')
[w,dwdr,dwdrr] = Gauss(para,r);
elseif (type == 'QUART')
[w,dwdr,dwdrr] = Quartic(r);
elseif (type == 'SPLIN')
[w,dwdr,dwdrr] = Spline(r);
elseif (type == 'CSRBF')
[w,dwdr,dwdrr] = CSRBF2(r);
else
error('Invalid type of weight function.');
end
dwdx = dwdr * drdx;
dwdxx = dwdrr * drdx * drdx;
function [w,dwdr,dwdrr] = Gauss(beta,r)
if (r>1.0)
w = 0.0;
dwdr = 0.0;
dwdrr = 0.0;
else
b2 = beta*beta;
r2 = r*r;
eb2 = exp(-b2);
w = (exp(-b2*r2) - eb2) / (1.0 - eb2);
dwdr = -2*b2*r*exp(-b2*r2) / (1.0 - eb2);
dwdrr = -2*b2*exp(-b2*r2)*(1-2*b2*r2) / (1.0 - eb2);
end
function [w,dwdr,dwdrr] = Quartic(r)
if (r>1.0)
w = 0.0;
dwdr = 0.0;
dwdrr = 0.0;
else
w = 1-6*r^2+8*r^3-3*r^4;
dwdr = -12*r+24*r^2-12*r^3;
dwdrr = -12+48*r-36*r^2;
end
function [w,dwdr,dwdrr] = Spline(r)
if (r>1.0)
w = 0.0;
dwdr = 0.0;
dwdrr = 0.0;
elseif (r<=0.5)
w = 2/3 - 4*r^2 + 4*r^3;
dwdr = -8*r + 12*r^2;
dwdrr = -8 + 24*r;
else
w = 4/3 - 4*r + 4*r^2 - 4*r^3/3;
dwdr = -4 + 8*r -4*r^2;
dwdrr = 8 - 8*r;
end
function [w,dwdr,dwdrr] = CSRBF2(r)
if (r>1.0)
w = 0.0;
dwdr = 0.0;
dwdrr = 0.0;
else
w = (1-r)^6*(6+36*r+82*r^2+72*r^3+30*r^4+5*r^5);
dwdr = 11*r*(r+2)*(5*r^3+15*r^2+18*r+4)*(r-1)^5;
dwdrr = 22*(25*r^5+100*r^4+142*r^3+68*r^2-16*r-4)*(r-1)^4;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -