📄 002_19.htm
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0059)http://www.chinagk.org/technology/IPTech/002/css/002_19.htm -->
<HTML><HEAD><TITLE>002_19</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312">
<STYLE type=text/css>.pg {
LEFT: 0px; WIDTH: 635px; POSITION: absolute; TOP: 0px; HEIGHT: 983px
}
BODY {
FONT-SIZE: 13px; COLOR: #000000; FONT-FAMILY: ""; BACKGROUND-COLOR: #ffffff
}
A {
TEXT-DECORATION: none
}
.ps0 {
LEFT: 64px; WIDTH: 530px; POSITION: absolute; TOP: 102px
}
.ps1 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 123px
}
.ps2 {
LEFT: 37px; WIDTH: 396px; POSITION: absolute; TOP: 143px
}
.ps3 {
LEFT: 64px; WIDTH: 518px; POSITION: absolute; TOP: 164px
}
.ps4 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 185px
}
.ps5 {
LEFT: 37px; WIDTH: 557px; POSITION: absolute; TOP: 204px
}
.ps6 {
LEFT: 37px; WIDTH: 557px; POSITION: absolute; TOP: 225px
}
.ps7 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 245px
}
.ps8 {
LEFT: 37px; WIDTH: 538px; POSITION: absolute; TOP: 266px
}
.ps9 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 287px
}
.ps10 {
LEFT: 37px; WIDTH: 464px; POSITION: absolute; TOP: 306px
}
.ps11 {
LEFT: 64px; WIDTH: 530px; POSITION: absolute; TOP: 327px
}
.ps12 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 347px
}
.ps13 {
LEFT: 37px; WIDTH: 538px; POSITION: absolute; TOP: 368px
}
.ps14 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 389px
}
.ps15 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 408px
}
.ps16 {
LEFT: 37px; WIDTH: 341px; POSITION: absolute; TOP: 429px
}
.ps17 {
LEFT: 64px; WIDTH: 530px; POSITION: absolute; TOP: 449px
}
.ps18 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 470px
}
.ps19 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 490px
}
.ps20 {
LEFT: 37px; WIDTH: 555px; POSITION: absolute; TOP: 510px
}
.ps21 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 531px
}
.ps22 {
LEFT: 37px; WIDTH: 264px; POSITION: absolute; TOP: 551px
}
.ps23 {
LEFT: 262px; WIDTH: 134px; POSITION: absolute; TOP: 573px
}
.ps24 {
LEFT: 64px; WIDTH: 529px; POSITION: absolute; TOP: 592px
}
.ps25 {
LEFT: 37px; WIDTH: 341px; POSITION: absolute; TOP: 612px
}
.ps26 {
LEFT: 64px; WIDTH: 530px; POSITION: absolute; TOP: 633px
}
.ps27 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 653px
}
.ps28 {
LEFT: 37px; WIDTH: 561px; POSITION: absolute; TOP: 674px
}
.ps29 {
LEFT: 37px; WIDTH: 555px; POSITION: absolute; TOP: 695px
}
.ps30 {
LEFT: 37px; WIDTH: 423px; POSITION: absolute; TOP: 714px
}
.ps31 {
LEFT: 64px; WIDTH: 529px; POSITION: absolute; TOP: 735px
}
.ps32 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 755px
}
.ps33 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 776px
}
.ps34 {
LEFT: 37px; WIDTH: 175px; POSITION: absolute; TOP: 796px
}
.ps35 {
LEFT: 193px; WIDTH: 245px; POSITION: absolute; TOP: 821px
}
.ps36 {
LEFT: 64px; WIDTH: 530px; POSITION: absolute; TOP: 844px
}
.ps37 {
LEFT: 371px; WIDTH: 150px; POSITION: absolute; TOP: 54px
}
.ps38 {
LEFT: 541px; WIDTH: 37px; POSITION: absolute; TOP: 31px
}
.ps39 {
LEFT: 44px; WIDTH: 43px; POSITION: absolute; TOP: 64px
}
.ps40 {
LEFT: 85px; WIDTH: 509px; POSITION: absolute; TOP: 884px
}
.ps41 {
LEFT: 85px; WIDTH: 87px; POSITION: absolute; TOP: 900px
}
.ft1 {
FONT-SIZE: 13px; FONT-FAMILY: "Times New Roman",Times,serif
}
.ft2 {
FONT-STYLE: italic; FONT-FAMILY: ""
}
.ft3 {
FONT-WEIGHT: bold; FONT-SIZE: 37px; FONT-STYLE: italic; FONT-FAMILY: "Times New Roman",Times,serif
}
.ft4 {
FONT-SIZE: 21px; COLOR: #000000; FONT-STYLE: italic; FONT-FAMILY: ""
}
.ft5 {
FONT-SIZE: 11px
}
.em0 {
FONT-SIZE: 13px; FONT-FAMILY: ""
}
.em1 {
FONT-SIZE: 13px; FONT-FAMILY: "Times New Roman",Times,serif
}
.em2 {
FONT-SIZE: 11px
}
.em3 {
FONT-STYLE: italic; FONT-FAMILY: "Times New Roman",Times,serif
}
.im0 {
LEFT: 555px; WIDTH: 7px; POSITION: absolute; TOP: 839px
}
.im1 {
LEFT: 33px; WIDTH: 562px; POSITION: absolute; TOP: 24px
}
.im2 {
LEFT: 65px; WIDTH: 8px; POSITION: absolute; TOP: 884px
}
.im3 {
LEFT: 35px; WIDTH: 134px; POSITION: absolute; TOP: 874px
}
</STYLE>
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY>
<DIV class=pg></DIV><!-- bitmap and vector images are written here -->
<DIV class=im0><IMG height=7 src="002_19.files/002_19_1.jpg" width=7
border=0></DIV>
<DIV class=im1><IMG height=64 src="002_19.files/right.jpg" width=563
border=0></DIV>
<DIV class=im2><IMG height=9 src="002_19.files/002_19_3.jpg" width=8
border=0></DIV>
<DIV class=im3><IMG height=2 src="002_19.files/002_19_4.jpg" width=134
border=0></DIV><!-- text starts here --><SPAN class=ps0><NOBR>在第二种情况下,在<SPAN
class=em1>PSTN</SPAN>的入口点和出口点分别必须向<SPAN class=em1>G.711</SPAN>格式转换编码和从<SPAN
class=em1>G.711</SPAN>格</NOBR></SPAN> <SPAN
class=ps1><NOBR>式转换编码,不过也有明显的例外,那就是选定<SPAN
class=em1>G.711</SPAN>作为呼叫中端点的介质格式,而且各自</NOBR></SPAN> <SPAN
class=ps2><NOBR>的网关并不需要介质在呼叫路径上的任何网段被压缩以保存带宽。</NOBR></SPAN> <SPAN
class=ps3><NOBR>另一个可能的跨越多个<SPAN
class=em1>AS</SPAN>域的互操作问题是,使用的路由协议类型以及是否可能进行</NOBR></SPAN> <SPAN
class=ps4><NOBR><SPAN class=ft1>QoS<SPAN
class=em0>路由。这个问题在用户感受中意味着:今天,当你拿起电话时,不管被叫方在</SPAN>PSTN<SPAN
class=em0>上的</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps5><NOBR>什么地方,你都能得到长途电话质量的语音呼叫(这并不适用于移动电话,尤其在模拟<SPAN
class=em1>AMPS</SPAN></NOBR></SPAN> <SPAN class=ps6><NOBR>网络中)。也就是说,语音<SPAN
class=em1>QoS</SPAN>协商是<SPAN class=em1>ISUP</SPAN>消息中信息元的一个简单参数,请求一个<SPAN
class=em1>64Kbps</SPAN>信</NOBR></SPAN> <SPAN class=ps7><NOBR>道携带<SPAN
class=em1>PCM µLaw</SPAN>语音。在新的基于包的<SPAN
class=em1>VoIP</SPAN>电话中,情况更加复杂。影响语音<SPAN class=em1>QoS</SPAN>的网络连</NOBR></SPAN>
<SPAN class=ps8><NOBR>接的一些因素将不得不和信令方法协商,尤其在涉及电话载波,并且想有到其他载波,如</NOBR></SPAN>
<SPAN class=ps9><NOBR><SPAN class=ft1>ILEC<SPAN class=em0>、</SPAN>CLEC<SPAN
class=em0>和</SPAN>IXC<SPAN class=em0>的包</SPAN><SPAN class=em2>POP</SPAN><SPAN
class=em0>时更是如此。在</SPAN>VoIP<SPAN
class=em0>技术成熟并得到市场接受,而且在载波和设</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps10><NOBR>备供应商之间出现合作之前,怎样在载波之间完成这些讨论不会有最终结果。</NOBR></SPAN> <SPAN
class=ps11><NOBR>例如,如果<SPAN class=em1>QoS</SPAN>路由涉及<SPAN class=em1>RSVP<SPAN
class=em0>,</SPAN></SPAN>在跨越管理域(也就是电话公司)时,它可能得不到支</NOBR></SPAN> <SPAN
class=ps12><NOBR>持。如果不支持,那么<SPAN
class=em1>QoS</SPAN>要么不是会话的一个元素,要么只能在能够发送和保证它的边界</NOBR></SPAN> <SPAN
class=ps13><NOBR>处才能有所保证。在任何一种情况下,端到端语音质量感受都得不到保证,所以即使使用</NOBR></SPAN> <SPAN
class=ps14><NOBR><SPAN class=ft1>G.711 µLaw<SPAN
class=em0>编码,当存在一般</SPAN>IP<SPAN
class=em0>路由通过管理域时,谁也说不准携带的语音听起来会是怎么</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps15><NOBR>样。在第<SPAN class=em1>5</SPAN>章中,我们将用工业标准和商业可用设备建立一个<SPAN
class=em1>VoIP</SPAN>拓扑,以说明在存在网络损</NOBR></SPAN> <SPAN
class=ps16><NOBR>耗,如包丢失或高误码率时,语音质量下降的典型例子。</NOBR></SPAN> <SPAN
class=ps17><NOBR>在子情况<SPAN
class=em1>A</SPAN>下,最佳情况是端点支持常用编码格式,这样就不再需要转换编码。在一个方</NOBR></SPAN> <SPAN
class=ps18><NOBR>向上的编码和打包延迟等于每个端点所需量的两倍,另外还要提供足够的缓冲以去除来自语</NOBR></SPAN> <SPAN
class=ps19><NOBR>音流的抖动。如果没有实现<SPAN
class=em1>QoS</SPAN>路由,拥塞期间造成包延迟的较大偏差,那么缓冲区的大小</NOBR></SPAN> <SPAN
class=ps20><NOBR>会显著增加总体延迟。例如,假定我们使用<SPAN
class=em1>20ms</SPAN>打包和编码速率的编码格式,<SPAN class=em1>10ms</SPAN>的单向传</NOBR></SPAN>
<SPAN class=ps21><NOBR>输延迟,这可能和使用<SPAN
class=em1>RTP</SPAN>报头压缩时通过路由器跨越几百英里的呼叫情况类似。如果端点</NOBR></SPAN> <SPAN
class=ps22><NOBR>需要缓冲<SPAN class=em1>3</SPAN>个包,那么得到的单向延迟差是:</NOBR></SPAN> <SPAN
class=ps23><NOBR><SPAN class=ft1>D=20+3<SPAN
class=em0>·</SPAN>20+10=90ms</SPAN></NOBR></SPAN> <SPAN
class=ps24><NOBR>显然,打包速率对端到端延迟影响最大。<SPAN class=em1>40ms</SPAN>的打包间隔会导致<SPAN
class=em1>170ms</SPAN>的单向延迟,即</NOBR></SPAN> <SPAN
class=ps25><NOBR>使从用户群的粗略观察来看,这个结果也不会令人满意。</NOBR></SPAN> <SPAN
class=ps26><NOBR>在子情况<SPAN class=em1>B</SPAN>下,端点的<SPAN
class=em1>VoIP</SPAN>编码是否一致并无关系,除非两端用的都是<SPAN class=em1>G.711</SPAN>。各个<SPAN
class=em1>PSTN</SPAN></NOBR></SPAN> <SPAN
class=ps27><NOBR>网关负责语音介质的转换编码,从每个端点使用的编码转换到<SPAN class=em1>PCM µLaw <SPAN
class=em0>,</SPAN></SPAN>以在<SPAN class=em1>TDM</SPAN>网络上</NOBR></SPAN> <SPAN
class=ps28><NOBR>中继,反之亦然。乍看起来,由于存在包含<SPAN
class=em1>DACS</SPAN>设备的快速交换网络,这是一个更好的情况。</NOBR></SPAN> <SPAN
class=ps29><NOBR><SPAN class=ft1>DACS<SPAN class=em0>通常能够在几</SPAN>ms<SPAN
class=em0>内交换</SPAN>TDM<SPAN class=em0>语音样本,而且它们的存在并不会对跨越</SPAN>PSTN<SPAN
class=em0>的端到端延</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps30><NOBR>迟贡献多少。但是实际上,这种方案在端到端延迟方面是更坏的情况。</NOBR></SPAN> <SPAN
class=ps31><NOBR>如果在每个网关都需要转换编码,那么在网络中有<SPAN class=em1>3</SPAN>个主要延迟点。在从包到<SPAN
class=em1>TDM</SPAN>格式的</NOBR></SPAN> <SPAN
class=ps32><NOBR>转换编码点也需要消除抖动,这将是<SPAN class=em1>2</SPAN>个或<SPAN
class=em1>3</SPAN>个包,而<SPAN class=em1>3</SPAN>个包的缓冲是更保守的设计。在每个终</NOBR></SPAN>
<SPAN class=ps33><NOBR>点<SPAN class=em1>20ms</SPAN>打包速率,<SPAN
class=em1>2</SPAN>个去抖动点(除去发送者端点外的所有点)的情况下,用前面例子中的常</NOBR></SPAN> <SPAN
class=ps34><NOBR>用参数,单向延迟最小会是:</NOBR></SPAN> <SPAN class=ps35><NOBR><SPAN
class=ft1>D = 20 + 3<SPAN class=em0>·</SPAN>20 +20 + 3<SPAN class=em0>·</SPAN>20
+ 10 = 170ms</SPAN></NOBR></SPAN> <SPAN class=ps36><NOBR>当<SPAN
class=em1>PSTN</SPAN>放在呼叫中间时,读者很容易会发现端点使用<SPAN
class=em1>30ms</SPAN>打包间隔时的问题 。 如果</NOBR></SPAN> <SPAN
class=ps37><NOBR><SPAN class=ft2>第<SPAN
class=em3>2</SPAN>章 包网络的介质传输</SPAN></NOBR></SPAN> <SPAN
class=ps38><NOBR><SPAN class=ft3>75</SPAN></NOBR></SPAN> <SPAN
class=ps39><NOBR><SPAN class=ft4>文档</SPAN></NOBR></SPAN> <SPAN
class=ps40><NOBR><SPAN
class=ft5>这些计算只是说明性的,没有包括先行延迟和其他由实现造成的延迟。其目标是要说明问题的量级,而不</SPAN></NOBR></SPAN>
<SPAN class=ps41><NOBR><SPAN class=ft5>是延迟的准确值。</SPAN></NOBR></SPAN>
</BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -