📄 002_43.htm
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0059)http://www.chinagk.org/technology/IPTech/002/css/002_43.htm -->
<HTML><HEAD><TITLE>002_43</TITLE>
<META http-equiv=Content-Type content="text/html; charset=gb2312">
<STYLE type=text/css>.pg {
LEFT: 0px; WIDTH: 635px; POSITION: absolute; TOP: 0px; HEIGHT: 983px
}
BODY {
FONT-SIZE: 13px; COLOR: #000000; FONT-FAMILY: ""; BACKGROUND-COLOR: #ffffff
}
A {
TEXT-DECORATION: none
}
.ps0 {
LEFT: 64px; WIDTH: 536px; POSITION: absolute; TOP: 104px
}
.ps1 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 123px
}
.ps2 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 144px
}
.ps3 {
LEFT: 37px; WIDTH: 286px; POSITION: absolute; TOP: 164px
}
.ps4 {
LEFT: 64px; WIDTH: 530px; POSITION: absolute; TOP: 185px
}
.ps5 {
LEFT: 37px; WIDTH: 557px; POSITION: absolute; TOP: 206px
}
.ps6 {
LEFT: 37px; WIDTH: 397px; POSITION: absolute; TOP: 226px
}
.ps7 {
LEFT: 446px; WIDTH: 154px; POSITION: absolute; TOP: 228px
}
.ps8 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 247px
}
.ps9 {
LEFT: 37px; WIDTH: 563px; POSITION: absolute; TOP: 268px
}
.ps10 {
LEFT: 37px; WIDTH: 563px; POSITION: absolute; TOP: 288px
}
.ps11 {
LEFT: 37px; WIDTH: 202px; POSITION: absolute; TOP: 309px
}
.ps12 {
LEFT: 64px; WIDTH: 530px; POSITION: absolute; TOP: 331px
}
.ps13 {
LEFT: 37px; WIDTH: 562px; POSITION: absolute; TOP: 350px
}
.ps14 {
LEFT: 37px; WIDTH: 544px; POSITION: absolute; TOP: 371px
}
.ps15 {
LEFT: 64px; WIDTH: 413px; POSITION: absolute; TOP: 393px
}
.ps16 {
LEFT: 471px; WIDTH: 122px; POSITION: absolute; TOP: 392px
}
.ps17 {
LEFT: 37px; WIDTH: 485px; POSITION: absolute; TOP: 412px
}
.ps18 {
LEFT: 64px; WIDTH: 529px; POSITION: absolute; TOP: 433px
}
.ps19 {
LEFT: 37px; WIDTH: 562px; POSITION: absolute; TOP: 454px
}
.ps20 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 474px
}
.ps21 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 495px
}
.ps22 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 516px
}
.ps23 {
LEFT: 37px; WIDTH: 82px; POSITION: absolute; TOP: 536px
}
.ps24 {
LEFT: 37px; WIDTH: 136px; POSITION: absolute; TOP: 568px
}
.ps25 {
LEFT: 64px; WIDTH: 529px; POSITION: absolute; TOP: 600px
}
.ps26 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 622px
}
.ps27 {
LEFT: 37px; WIDTH: 545px; POSITION: absolute; TOP: 642px
}
.ps28 {
LEFT: 37px; WIDTH: 556px; POSITION: absolute; TOP: 664px
}
.ps29 {
LEFT: 37px; WIDTH: 163px; POSITION: absolute; TOP: 683px
}
.ps30 {
LEFT: 371px; WIDTH: 150px; POSITION: absolute; TOP: 54px
}
.ps31 {
LEFT: 541px; WIDTH: 37px; POSITION: absolute; TOP: 31px
}
.ps32 {
LEFT: 44px; WIDTH: 43px; POSITION: absolute; TOP: 64px
}
.ft0 {
FONT-SIZE: 12px; FONT-FAMILY: "Times New Roman",Times,serif
}
.ft2 {
FONT-FAMILY: ""
}
.ft3 {
FONT-STYLE: italic; FONT-FAMILY: ""
}
.ft4 {
FONT-WEIGHT: bold; FONT-SIZE: 37px; FONT-STYLE: italic; FONT-FAMILY: "Times New Roman",Times,serif
}
.ft5 {
FONT-SIZE: 21px; COLOR: #000000; FONT-STYLE: italic; FONT-FAMILY: ""
}
.em0 {
FONT-SIZE: 12px; FONT-FAMILY: "Times New Roman",Times,serif
}
.em1 {
FONT-SIZE: 13px; FONT-FAMILY: ""
}
.em2 {
FONT-STYLE: italic; FONT-FAMILY: "Times New Roman",Times,serif
}
.im0 {
LEFT: 33px; WIDTH: 562px; POSITION: absolute; TOP: 24px
}
</STYLE>
<META content="MSHTML 6.00.2600.0" name=GENERATOR></HEAD>
<BODY>
<DIV class=pg></DIV><!-- bitmap and vector images are written here -->
<DIV class=im0><IMG height=64 src="002_43.files/right.jpg" width=563
border=0></DIV><!-- text starts here --><SPAN class=ps0><NOBR><SPAN
class=ft0>AAL2<SPAN class=em1>中在信元丢失情况下的错误恢复十分简单,可以通过</SPAN>CPS<SPAN
class=em1>子层端点的重新同步完成。</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps1><NOBR>如果中间信元丢失,<SPAN
class=em0>SN</SPAN>不会双态转换,我们很容易可以看到丢失了一个奇编号的包。部分接</NOBR></SPAN> <SPAN
class=ps2><NOBR>收到的包被丢弃,在下一个可靠建立的包的有效载荷边界出,该过程重新开始。这种传输机</NOBR></SPAN> <SPAN
class=ps3><NOBR>制对语音和音频带应用产生了极好的延迟特性。</NOBR></SPAN> <SPAN class=ps4><NOBR>用<SPAN
class=em0>AAL2</SPAN>处理传真和音频带传输有什么困难呢?如果一个用户的配置说明了使用压缩,当</NOBR></SPAN> <SPAN
class=ps5><NOBR>他拨叫远程终端时,起始的连接会通过配置中规定的编码解码方案,如<SPAN
class=em0>G.726</SPAN>来完成。连接会</NOBR></SPAN> <SPAN
class=ps6><NOBR>保留在这种模式中,直到拨叫远程的传真机号码,并且远程端点将</NOBR></SPAN> <SPAN
class=ps7><NOBR><SPAN class=ft0>CED<SPAN
class=em1>音调放到线上为止。</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps8><NOBR>这时,接入点和网络之间的协作功能需要选择一定的比特率,以可靠传输端到端的音频带信</NOBR></SPAN> <SPAN
class=ps9><NOBR>号。这意味着,当检测到<SPAN class=em0>2100Hz</SPAN>音调时,携带传真呼叫数据的<SPAN
class=em0>VC</SPAN>中的信道会扩展到<SPAN class=em0>64Kbps</SPAN>。</NOBR></SPAN> <SPAN
class=ps10><NOBR>扩展会一直有效,直到传真被传送,或者调制解调器信号调制已被关闭。扩展必须快速可靠,</NOBR></SPAN> <SPAN
class=ps11><NOBR>以便不违反信号握手的定时考虑。</NOBR></SPAN> <SPAN class=ps12><NOBR><SPAN
class=ft0>AAL2<SPAN class=em1>定义了三种类型的包。</SPAN>1<SPAN
class=em1>类包,也叫做不受保护的包,作为缺省使用,携带传真传</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps13><NOBR>输的压缩图像。<SPAN
class=em0>2</SPAN>类包,也叫做部分保护的包,在有效载荷开始处包含内部报头和<SPAN
class=em0>CRC</SPAN>保护域。</NOBR></SPAN> <SPAN class=ps14><NOBR>报头域是<SPAN
class=em0>19</SPAN>比特,<SPAN class=em0>CRC</SPAN>占据了<SPAN
class=em0>3</SPAN>字节报头的剩余<SPAN
class=em0>5</SPAN>比特。有效载荷的剩余部分是不受保护的。</NOBR></SPAN> <SPAN class=ps15><NOBR><SPAN
class=ft0>3<SPAN class=em1>类包,也叫做完全受保护的包,用来传输拨叫的数字(<SPAN
class=em0>DTMF</SPAN>信号)</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps16><NOBR>、<SPAN class=em0>CAS</SPAN>位、传真解调</NOBR></SPAN> <SPAN
class=ps17><NOBR>控制数据、以及警铃。<SPAN class=em0>3</SPAN>类包可以用来扩充检测远程传真终端的<SPAN
class=em0>CED</SPAN>信道比特率。</NOBR></SPAN> <SPAN
class=ps18><NOBR>在网络接入部分,次要的、但仍是强制的需要是,在<SPAN
class=em0>MG</SPAN>和介质网关控制器间实现了中</NOBR></SPAN> <SPAN
class=ps19><NOBR>继时所使用的呼叫模型。对于<SPAN
class=em0>SOHO</SPAN>和语音商业应用,接入中继在大多数情况下是必须的。</NOBR></SPAN> <SPAN
class=ps20><NOBR>动态或静态的<SPAN
class=em0>CID</SPAN>分配等因素会影响拨号后延迟以及呼叫用户感受到的总体质量。在接入处</NOBR></SPAN> <SPAN
class=ps21><NOBR>静态分配<SPAN
class=em0>CID</SPAN>的优点是连接期间开销少,因为对一个特定端点,虚拟干线的虚拟时隙不需要</NOBR></SPAN> <SPAN
class=ps22><NOBR>协商或者为每个呼叫分配。在每个呼叫基础上的动态分配提供了灵活性,减少了延迟,适合</NOBR></SPAN> <SPAN
class=ps23><NOBR>于某些应用。</NOBR></SPAN> <SPAN class=ps24><NOBR><SPAN
class=ft2>在主干网中合成介质流</SPAN></NOBR></SPAN> <SPAN
class=ps25><NOBR>当所有接入流合成到云团之内是,需要再次提出古老的添加和引下多路复用( <SPAN class=em0>Add
and</SPAN></NOBR></SPAN> <SPAN class=ps26><NOBR><SPAN class=ft0>Drop
Mutiplexing<SPAN class=em1>,</SPAN>ADM<SPAN class=em1>)</SPAN><SPAN
class=em1>问题。如果主干网是基于</SPAN>ATM<SPAN class=em1>,</SPAN>AAL2<SPAN
class=em1>的使用可以在某种程度上简</SPAN></SPAN></NOBR></SPAN> <SPAN
class=ps27><NOBR>化了这个问题。惟一的复杂性在于压缩连接上音频带流的折叠效应。其他主干网技术也使用</NOBR></SPAN> <SPAN
class=ps28><NOBR><SPAN class=ft0>ATM<SPAN
class=em1>方案,它们有不同程度的效率、灵活性和延迟。这些技术和网络间介质流路由的信令问</SPAN></SPAN></NOBR></SPAN>
<SPAN class=ps29><NOBR>题已经超出了本书的范围。</NOBR></SPAN> <SPAN class=ps30><NOBR><SPAN
class=ft3>第<SPAN class=em2>2</SPAN>章 包网络的介质传输</SPAN></NOBR></SPAN> <SPAN
class=ps31><NOBR><SPAN class=ft4>99</SPAN></NOBR></SPAN> <SPAN
class=ps32><NOBR><SPAN class=ft5>文档</SPAN></NOBR></SPAN> </BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -