📄 myrbfnet.m
字号:
%RBF神经网络实现(聚类)
clc
close all
clear all
InDim=2;%样本输入维数
OutDim=3;% 样本输出维数
figure
title('训练样本');echo off
axis([-2,2,-2,2]);axis on;grid
xlabel('SamIn x');
ylabel('SamIn y');
line([-1 1],[1 1])
line([1 -1],[1 0])
line([-1 -1],[0 1])
line([-1 1],[-0.5 -0.5])
line([-1 1],[-1.5 -1.5])
line([1 1],[-0.5 -1.5])
line([-1 -1],[-0.5 -1.5])
hold on
SamNum=200;%训练样本数
%rand('state',sum(100*clock))
SamIn=(rand(2,SamNum)-0.5)*4;% 随机产生200个[-2,2]区间样本输入
SamOut=[];
for i=1:SamNum
Sam=SamIn(:,i);
x=Sam(1,1);
y=Sam(2,1);
if((x>-1)&(x<1))==1
if ((y>x/2+1/2)&(y<1))==1
plot(x,y,'r+')
class=[0 1 0]';
elseif((y<-0.5)&(y>-1.5))==1
plot(x,y,'rs')
class=[0 0 1]';
else
plot(x,y,'ro')
class=[1 0 0]';
end
else
plot(x,y,'ro')
class=[1 0 0]';
end
SamOut=[SamOut class]; %得到样本对应的类别属性
end
MaxEpochs=1000;%最大训练次数
HiddenUnitNum = 30; % 隐节点数,即聚类样本数
Overlap = 1.0; % 隐节点重叠系数
Centers = SamIn(:,1:HiddenUnitNum);
% NumberInClusters = zeros(HiddenUnitNum,1); % 各类中的样本数,初始化为零
% IndexInClusters = zeros(HiddenUnitNum,SamNum); % 各类所含样本的索引号
% while 1
for EndEpochs=1:MaxEpochs
NumberInClusters = zeros(HiddenUnitNum,1); % 各类中的样本数,初始化为零
IndexInClusters = zeros(HiddenUnitNum,SamNum); % 各类所含样本的索引号
% 按最小距离原则对所有样本进行分类
for i = 1:SamNum
AllDistance = dist(Centers',SamIn(:,i));
[MinDist,Pos] = min(AllDistance);
NumberInClusters(Pos) = NumberInClusters(Pos) + 1;
IndexInClusters(Pos,NumberInClusters(Pos)) = i;
end
% 保存旧的聚类中心
OldCenters = Centers;
for i = 1:HiddenUnitNum
Index = IndexInClusters(i,1:NumberInClusters(i));
Centers(:,i) = mean(SamIn(:,Index)')';
end
% 判断新旧聚类中心是否一致,是则结束聚类
EqualNum = sum(sum(Centers==OldCenters));
if EqualNum == InDim*HiddenUnitNum
break;
end
end
% 计算各隐节点的扩展常数(宽度)
AllDistances = dist(Centers',Centers); % 计算隐节点数据中心间的距离(矩阵)
Maximum = max(max(AllDistances)); % 找出其中最大的一个距离
for i = 1:HiddenUnitNum % 将对角线上的0 替换为较大的值
AllDistances(i,i) = Maximum+1;
end
Spreads = Overlap*min(AllDistances)'; % 以隐节点间的最小距离作为扩展常数
% 计算各隐节点的输出权值
Distance = dist(Centers',SamIn); % 计算各样本输入离各数据中心的距离
SpreadsMat = repmat(Spreads,1,SamNum);
HiddenUnitOut = radbas(Distance./SpreadsMat); % 计算隐节点输出阵
HiddenUnitOutEx = [HiddenUnitOut' ones(SamNum,1)]'; % 考虑偏移
W2Ex = SamOut*pinv(HiddenUnitOutEx); % 求广义输出权值
W2 = W2Ex(:,1:HiddenUnitNum); % 输出权值
B2 = W2Ex(:,HiddenUnitNum+1); % 偏移
% TestSamNum=SamNum;
% TestSamIn=SamIn;
TestSamNum=500;% 测试样本数
TestSamIn=(rand(2,TestSamNum)-0.5)*4;
TestDistance = dist(Centers',TestSamIn);
TestSpreadsMat = repmat(Spreads,1,TestSamNum);
TestHiddenUnitOut = radbas(TestDistance./TestSpreadsMat);
B=repmat(B2,1,TestSamNum);
TestNNOut = W2*TestHiddenUnitOut+B;
[val nnclass]=max(TestNNOut);
figure
title('测试结果');echo off
axis([-2,2,-2,2]);axis on;grid
xlabel('Input x');
ylabel('Output y');
line([-1 1],[1 1]);
line([1 -1],[1 0]);
line([-1 -1],[0 1]);
line([-1 1],[-0.5 -0.5]);
line([-1 1],[-1.5 -1.5]);
line([1 1],[-0.5 -1.5]);
line([-1 -1],[-0.5 -1.5]);
hold on
TestSamOut = [];
for i = 1:TestSamNum
x = TestSamIn(1,i);
y = TestSamIn(2,i);
if nnclass(i)==1
plot(x,y,'ro');
elseif nnclass(i)==2
plot(x,y,'r+');
else
plot(x,y,'rs');
end
if((x>-1)&(x<1))==1
if ((y>x/2+1/2)&(y<1))==1
class = 2;
elseif((y<-0.5)&(y>-1.5))==1
class = 3;
else
class = 1;
end
else
class = 1;
end
TestSamOut = [TestSamOut class];
end
Result = ~abs(nnclass-TestSamOut); % 正确分类显示为1
Percent = sum(Result)/length(Result) % 正确分类率
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -