📄 dsp4emu.cpp
字号:
/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies.*******************************************************************************/
// Due recognition and credit are given on Overload's DSP website.
// Thank those contributors for their hard work on this chip.
#include "dsp4.h"
#define DSP4_READ_WORD(x) \
READ_WORD(DSP4.parameters+x)
#define DSP4_WRITE_WORD(x,d) \
WRITE_WORD(DSP4.output+x,d);
// used to wait for dsp i/o
#define DSP4_WAIT(x) \
DSP4_Logic = x; return;
//////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
void DSP4_Multiply(short Multiplicand, short Multiplier, int &Product)
{
Product = (Multiplicand * Multiplier << 1) >> 1;
}
void DSP4_UnknownOP11(short A, short B, short C, short D, short &M)
{
// 0x155 = 341 = Horizontal Width of the Screen
M = ((A * 0x0155 >> 2) & 0xf000) | ((B * 0x0155 >> 6) & 0x0f00) |
((C * 0x0155 >> 10) & 0x00f0) | ((D * 0x0155 >> 14) & 0x000f);
}
const unsigned short Op0A_Values[16] = {
0x0000, 0x0030, 0x0060, 0x0090, 0x00c0, 0x00f0, 0x0120, 0x0150,
0xfe80, 0xfeb0, 0xfee0, 0xff10, 0xff40, 0xff70, 0xffa0, 0xffd0
};
void DSP4_Op0A(short n2, short &o1, short &o2, short &o3, short &o4)
{
o4 = Op0A_Values[(n2 & 0x000f)];
o3 = Op0A_Values[(n2 & 0x00f0) >> 4];
o2 = Op0A_Values[(n2 & 0x0f00) >> 8];
o1 = Op0A_Values[(n2 & 0xf000) >> 12];
}
//////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////
#if OP==0x0009
#define PRINT
#endif
void DSP4_Op03()
{
#ifdef PRINT
printf("Op03\n");
#endif
MaxTilesPerRow = 33;
for (int i=0; i < 32; i++)
RowCount[i] = 0;
// reset op09 data
op09_mode = 0;
}
void DSP4_Op0E()
{
#ifdef PRINT
printf("Op0E\n");
#endif
MaxTilesPerRow = 16;
for (int i=0; i < 32; i++)
RowCount[i] = 0;
// reset op09 data
op09_mode = 1;
}
#undef PRINT
void DSP4_Op06(bool8 size, bool8 msb)
{
// save post-oam table data for future retrieval
op06_OAM[op06_index] |= (msb<<(op06_offset+0));
op06_OAM[op06_index] |= (size<<(op06_offset+1));
op06_offset += 2;
if(op06_offset==8)
{
// move to next byte in buffer
op06_offset=0;
op06_index++;
}
}
#if OP==0x0001
#define PRINT
#endif
void DSP4_Op01()
{
uint16 command;
DSP4.waiting4command = FALSE;
// op flow control
switch(DSP4_Logic) {
case 1: goto resume1; break;
case 2: goto resume2; break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
// 0x00 = DSP4_READ_WORD(0x00);
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_focalx = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
// (envelope?) 0xc0 = DSP4_READ_WORD(0x14);
project_pitchylow = DSP4_READ_WORD(0x16);
project_pitchy = DSP4_READ_WORD(0x18);
project_pitchxlow = DSP4_READ_WORD(0x1a);
project_pitchx = DSP4_READ_WORD(0x1c);
far_plane = DSP4_READ_WORD(0x1e);
// ? = DSP4_READ_WORD(0x20);
project_y1low = DSP4_READ_WORD(0x22);
// pre-compute
view_plane = PLANE_START;
// find starting projection points
project_x1 = project_focalx;
project_y -= viewport_bottom;
// multi-op storage
multi_index1 = 0;
multi_index2 = 0;
// debug
block=0;
////////////////////////////////////////////////////
// command check
do {
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1:
// inspect input
command = DSP4_READ_WORD(0);
// check for termination
if(command == 0x8000) break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 8;
DSP4_WAIT(2) resume2:
////////////////////////////////////////////////////
// process one iteration of projection
// inspect inputs
int16 plane = DSP4_READ_WORD(0);
int16 index, lcv;
int16 py_dy=0, px_dx=0;
int16 y_out, x_out;
int16 envelope = DSP4_READ_WORD(6);
int16 project_x;
// ignore invalid data
if((uint16) plane == 0x8001) continue;
// one-time init
if(far_plane)
{
// setup final parameters
project_focalx += plane;
project_x1 = project_focalx;
project_y1 = project_focaly;
plane = far_plane;
far_plane = 0;
// track occlusion
multi_farplane[1] = plane;
multi_raster[1] = viewport_bottom;
}
// use proportional triangles to project new coords
project_x2 = project_focalx * plane / view_plane;
project_y2 = project_focaly * plane / view_plane;
// quadratic regression (rough)
if(project_focaly>=-0x0f)
py_dy = project_focaly * project_focaly * -0.20533553
- 1.08330005 * project_focaly - 69.61094639;
else
py_dy = project_focaly * project_focaly * -0.000657035759
- 1.07629051 * project_focaly - 65.69315963;
// approximate # of raster lines
segments = abs(project_y2-project_y1);
// prevent overdraw
if(project_y2>=raster) segments=0;
else raster=project_y2;
// don't draw outside the window
if(project_y2<viewport_top) segments=0;
// project new positions
if(segments>0)
{
// interpolate between projected points
px_dx = ((project_x2-project_x1)<<8)/segments;
}
// debug
++block;
#ifdef PRINT
printf("(line %d) Op01 check %02X, plane %04X, focal_y %04X, y2 %04X, y1 %04X\n",c,(uint16)segments,(uint16)(plane),(uint16)project_focaly,(uint16)project_y2,(uint16)project_y1);
#endif
// prepare output
DSP4.out_count=8+2+6*segments;
// pre-block data
DSP4_WRITE_WORD(0,project_focalx);
DSP4_WRITE_WORD(2,project_x2);
DSP4_WRITE_WORD(4,project_focaly);
DSP4_WRITE_WORD(6,project_y2);
DSP4_WRITE_WORD(8,segments);
#if 0
DSP4_WRITE_WORD(0,-1);
DSP4_WRITE_WORD(2,-1);
DSP4_WRITE_WORD(4,-1);
DSP4_WRITE_WORD(6,-1);
DSP4_WRITE_WORD(8,-1);
#endif
index=10;
project_x = project_centerx + project_x1;
// iterate through each point
for( lcv=0; lcv<segments; lcv++ )
{
// step through the projected line
y_out = project_y+((py_dy*lcv)>>8);
x_out = project_x+((px_dx*lcv)>>8);
// factor in dynamic track changes
y_out += envelope;
#if 0
project_ptr=-1;
y_out=-1;
//x_out=-1;
#endif
// data
DSP4_WRITE_WORD(index+0,project_ptr);
DSP4_WRITE_WORD(index+2,y_out);
DSP4_WRITE_WORD(index+4,x_out);
index += 6;
// post-update
project_ptr -= 4;
}
// post-update
project_y += ((py_dy*lcv)>>8);
// new positions
if(segments>0)
{
project_x1 = project_x2;
project_y1 = project_y2;
// storage of focals for op07
multi_focaly[multi_index2++] = project_focaly;
// track occlusion: can't see anything below it
multi_farplane[1] = plane;
multi_raster[1] -= segments;
}
// update projection points
project_pitchy += (int8)DSP4.parameters[3];
project_pitchx += (int8)DSP4.parameters[5];
project_focaly += project_pitchy;
project_focalx += project_pitchx;
} while (1);
// terminate op
DSP4.waiting4command = TRUE;
DSP4.out_count = 0;
}
#undef PRINT
#if OP==0x0007
#define PRINT
#endif
void DSP4_Op07()
{
uint16 command;
DSP4.waiting4command = FALSE;
// op flow control
switch(DSP4_Logic) {
case 1: goto resume1; break;
case 2: goto resume2; break;
}
////////////////////////////////////////////////////
// sort inputs
// 0x00 = DSP4_READ_WORD(0x00);
project_focaly = DSP4_READ_WORD(0x02);
raster = DSP4_READ_WORD(0x04);
viewport_top = DSP4_READ_WORD(0x06);
project_y = DSP4_READ_WORD(0x08);
viewport_bottom = DSP4_READ_WORD(0x0a);
project_x1low = DSP4_READ_WORD(0x0c);
project_x1 = DSP4_READ_WORD(0x0e);
project_centerx = DSP4_READ_WORD(0x10);
project_ptr = DSP4_READ_WORD(0x12);
// (envelope?) 0xc0 = DSP4_READ_WORD(0x14);
// pre-compute
view_plane = PLANE_START;
// find projection targets
project_y1 = project_focaly;
project_y -= viewport_bottom;
// multi-op storage
multi_index2 = 0;
// debug
block=0;
#ifdef PRINT
printf("(line %d) Op07 data %04X\n",c,(uint16)project_y1);
#endif
////////////////////////////////////////////////////
// command check
do {
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1:
// inspect input
command = DSP4_READ_WORD(0);
// check for opcode termination
if(command == 0x8000) break;
// already have 2 bytes in queue
DSP4.in_index = 2;
DSP4.in_count = 12;
DSP4_WAIT(2) resume2:
////////////////////////////////////////////////////
// process one loop of projection
int16 plane;
int16 index,lcv;
int16 y_out,x_out;
int16 py_dy=0,px_dx=0;
int16 project_x;
// debug
++block;
// inspect inputs
plane = DSP4_READ_WORD(0);
project_y2 = DSP4_READ_WORD(2);
// ? = DSP4_READ_WORD(4);
project_x2 = DSP4_READ_WORD(6);
int16 envelope = DSP4_READ_WORD(8);
// ignore invalid data
if((uint16) plane == 0x8001) continue;
// multi-op storage
project_focaly = multi_focaly[multi_index2];
// quadratic regression (rough)
if(project_focaly>=-0x0f)
py_dy = project_focaly * project_focaly * -0.20533553
- 1.08330005 * project_focaly - 69.61094639;
else
py_dy = project_focaly * project_focaly * -0.000657035759
- 1.07629051 * project_focaly - 65.69315963;
// approximate # of raster lines
segments = abs(project_y2-project_y1);
// prevent overdraw
if(project_y2>=raster) segments=0;
else raster=project_y2;
// don't draw outside the window
if(project_y2<viewport_top) segments=0;
// project new positions
if(segments>0)
{
// interpolate between projected points
px_dx = ((project_x2-project_x1)<<8)/segments;
}
#ifdef PRINT
printf("(line %d) Op07 block %d, loc %04X, out %02X, project_x2 %04X\n",c,block,plane,segments,(uint16)project_x2);
#endif
// prepare pre-output
DSP4.out_count=4+2+6*segments;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -