📄 svm_learn_main.c
字号:
/***********************************************************************//* *//* svm_learn_main.c *//* *//* Command line interface to the learning module of the *//* Support Vector Machine. *//* *//* Author: Thorsten Joachims *//* Date: 02.07.02 *//* *//* Copyright (c) 2000 Thorsten Joachims - All rights reserved *//* *//* This software is available for non-commercial use only. It must *//* not be modified and distributed without prior permission of the *//* author. The author is not responsible for implications from the *//* use of this software. *//* *//***********************************************************************//* uncomment, if you want to use svm-learn out of C++ *//* extern "C" { */# include "svm_common.h"# include "svm_learn.h"/* } */char docfile[200]; /* file with training examples */char modelfile[200]; /* file for resulting classifier */char restartfile[200]; /* file with initial alphas */void read_input_parameters(int, char **, char *, char *, char *, long *, LEARN_PARM *, KERNEL_PARM *);void wait_any_key();void print_help();int main (int argc, char* argv[]){ DOC **docs; /* training examples */ long totwords,totdoc,i; double *target; double *alpha_in=NULL; KERNEL_CACHE *kernel_cache; LEARN_PARM learn_parm; KERNEL_PARM kernel_parm; MODEL *model=(MODEL *)my_malloc(sizeof(MODEL)); read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity, &learn_parm,&kernel_parm); read_documents(docfile,&docs,&target,&totwords,&totdoc); if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc); if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */ kernel_cache=NULL; } else { /* Always get a new kernel cache. It is not possible to use the same cache for two different training runs */ kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size); } if(learn_parm.type == CLASSIFICATION) { svm_learn_classification(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } else if(learn_parm.type == REGRESSION) { svm_learn_regression(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == RANKING) { svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,&kernel_cache,model); } else if(learn_parm.type == OPTIMIZATION) { svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm, &kernel_parm,kernel_cache,model,alpha_in); } if(kernel_cache) { /* Free the memory used for the cache. */ kernel_cache_cleanup(kernel_cache); } /* Warning: The model contains references to the original data 'docs'. If you want to free the original data, and only keep the model, you have to make a deep copy of 'model'. */ /* deep_copy_of_model=copy_model(model); */ write_model(modelfile,model); free(alpha_in); free_model(model,0); for(i=0;i<totdoc;i++) free_example(docs[i],1); free(docs); free(target); return(0);}/*---------------------------------------------------------------------------*/void read_input_parameters(int argc,char *argv[],char *docfile,char *modelfile, char *restartfile,long *verbosity, LEARN_PARM *learn_parm,KERNEL_PARM *kernel_parm){ long i; char type[100]; /* set default */ strcpy (modelfile, "svm_model"); strcpy (learn_parm->predfile, "trans_predictions"); strcpy (learn_parm->alphafile, ""); strcpy (restartfile, ""); (*verbosity)=1; learn_parm->biased_hyperplane=1; learn_parm->sharedslack=0; learn_parm->remove_inconsistent=0; learn_parm->skip_final_opt_check=0; learn_parm->svm_maxqpsize=10; learn_parm->svm_newvarsinqp=0; learn_parm->svm_iter_to_shrink=-9999; learn_parm->maxiter=100000; learn_parm->kernel_cache_size=40; learn_parm->svm_c=0.0; learn_parm->eps=0.1; learn_parm->transduction_posratio=-1.0; learn_parm->svm_costratio=1.0; learn_parm->svm_costratio_unlab=1.0; learn_parm->svm_unlabbound=1E-5; learn_parm->epsilon_crit=0.001; learn_parm->epsilon_a=1E-15; learn_parm->compute_loo=0; learn_parm->rho=1.0; learn_parm->xa_depth=0; kernel_parm->kernel_type=0; kernel_parm->poly_degree=3; kernel_parm->rbf_gamma=1.0; kernel_parm->coef_lin=1; kernel_parm->coef_const=1; strcpy(kernel_parm->custom,"empty"); strcpy(type,"c"); for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) { switch ((argv[i])[1]) { case '?': print_help(); exit(0); case 'z': i++; strcpy(type,argv[i]); break; case 'v': i++; (*verbosity)=atol(argv[i]); break; case 'b': i++; learn_parm->biased_hyperplane=atol(argv[i]); break; case 'i': i++; learn_parm->remove_inconsistent=atol(argv[i]); break; case 'f': i++; learn_parm->skip_final_opt_check=!atol(argv[i]); break; case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break; case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break; case '#': i++; learn_parm->maxiter=atol(argv[i]); break; case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break; case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break; case 'c': i++; learn_parm->svm_c=atof(argv[i]); break; case 'w': i++; learn_parm->eps=atof(argv[i]); break; case 'p': i++; learn_parm->transduction_posratio=atof(argv[i]); break; case 'j': i++; learn_parm->svm_costratio=atof(argv[i]); break; case 'e': i++; learn_parm->epsilon_crit=atof(argv[i]); break; case 'o': i++; learn_parm->rho=atof(argv[i]); break; case 'k': i++; learn_parm->xa_depth=atol(argv[i]); break; case 'x': i++; learn_parm->compute_loo=atol(argv[i]); break; case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break; case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break; case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break; case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break; case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break; case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break; case 'l': i++; strcpy(learn_parm->predfile,argv[i]); break; case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break; case 'y': i++; strcpy(restartfile,argv[i]); break; default: printf("\nUnrecognized option %s!\n\n",argv[i]); print_help(); exit(0); } } if(i>=argc) { printf("\nNot enough input parameters!\n\n"); wait_any_key(); print_help(); exit(0); } strcpy (docfile, argv[i]); if((i+1)<argc) { strcpy (modelfile, argv[i+1]); } if(learn_parm->svm_iter_to_shrink == -9999) { if(kernel_parm->kernel_type == LINEAR) learn_parm->svm_iter_to_shrink=2; else learn_parm->svm_iter_to_shrink=100; } if(strcmp(type,"c")==0) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -