📄 svd.cpp
字号:
#include <math.h>
#include <stdio.h>
#include <malloc.h>
/* svd-奇异值分解子程序(SVD)
* 把m×n矩阵a分解成udv,这里u,v分别为其左正交和右正交矩阵,d是奇异值对角矩阵
* 参数说明:
* a : 所要分解的m×n矩阵a, 返回左正交矩阵u
* m : 矩阵a的行
* n : 矩阵a的列
* d : 返回矩阵a的向量
* v : 返回矩阵a的右正交矩阵
*/
#define SIGN(a, b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#define MAX(x,y) ((x)>(y)?(x):(y))
static double PYTHAG(double a, double b)
{
double at = fabs(a), bt = fabs(b), ct, result;
if (at > bt) { ct = bt / at; result = at * sqrt(1.0 + ct * ct); }
else if (bt > 0.0) { ct = at / bt; result = bt * sqrt(1.0 + ct * ct); }
else result = 0.0;
return(result);
}
int svd(float *a, int m, int n, float *d, float *v)
{
int flag, i, its, j, jj, k, l, nm;
double c, f, h, s, x, y, z;
double anorm = 0.0, g = 0.0, scale = 0.0;
double *rv1;
if (m < n)
{
fprintf(stderr, "#rows must be > #cols \n");
return(0);
}
rv1 = (double *)malloc((unsigned int) n*sizeof(double));
/* Householder reduction to bidiagonal form */
for (i = 0; i < n; i++)
{
/* left-hand reduction */
l = i + 1;
rv1[i] = scale * g;
g = s = scale = 0.0;
if (i < m)
{
for (k = i; k < m; k++)
scale += fabs((double)a[k*m+i]);
if (scale)
{
for (k = i; k < m; k++)
{
a[k*m+i] = (float)((double)a[k*m+i]/scale);
s += ((double)a[k*m+i] * (double)a[k*m+i]);
}
f = (double)a[i*n+i];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i*n+i] = (float)(f - g);
if (i != n - 1)
{
for (j = l; j < n; j++)
{
for (s = 0.0, k = i; k < m; k++)
s += ((double)a[k*m+i] * (double)a[k*m+j]);
f = s / h;
for (k = i; k < m; k++)
a[k*m+j] += (float)(f * (double)a[k*m+i]);
}
}
for (k = i; k < m; k++)
a[k*m+i] = (float)((double)a[k*m+i]*scale);
}
}
d[i] = (float)(scale * g);
/* right-hand reduction */
g = s = scale = 0.0;
if (i < m && i != n - 1)
{
for (k = l; k < n; k++)
scale += fabs((double)a[i*n+k]);
if (scale)
{
for (k = l; k < n; k++)
{
a[i*n+k] = (float)((double)a[i*n+k]/scale);
s += ((double)a[i*n+k] * (double)a[i*n+k]);
}
f = (double)a[i*n+l];
g = -SIGN(sqrt(s), f);
h = f * g - s;
a[i*n+l] = (float)(f - g);
for (k = l; k < n; k++)
rv1[k] = (double)a[i*n+k] / h;
if (i != m - 1)
{
for (j = l; j < m; j++)
{
for (s = 0.0, k = l; k < n; k++)
s += ((double)a[j*m+k] * (double)a[i*n+k]);
for (k = l; k < n; k++)
a[j*m+k] += (float)(s * rv1[k]);
}
}
for (k = l; k < n; k++)
a[i*n+k] = (float)((double)a[i*n+k]*scale);
}
}
anorm = MAX(anorm, (fabs((double)d[i]) + fabs(rv1[i])));
}
/* accumulate the right-hand transformation */
for (i = n - 1; i >= 0; i--)
{
if (i < n - 1)
{
if (g)
{
for (j = l; j < n; j++)
v[j*n+i] = (float)(((double)a[i*n+j] / (double)a[i*n+l]) / g);
/* double division to avoid underflow */
for (j = l; j < n; j++)
{
for (s = 0.0, k = l; k < n; k++)
s += ((double)a[i*n+k] * (double)v[k*n+j]);
for (k = l; k < n; k++)
v[k*n+j] += (float)(s * (double)v[k*n+i]);
}
}
for (j = l; j < n; j++)
v[i*n+j] = v[j*n+i] = 0.0;
}
v[i*n+i] = 1.0;
g = rv1[i];
l = i;
}
/* accumulate the left-hand transformation */
for (i = n - 1; i >= 0; i--)
{
l = i + 1;
g = (double)d[i];
if (i < n - 1)
for (j = l; j < n; j++)
a[i*n+j] = 0.0;
if (g)
{
g = 1.0 / g;
if (i != n - 1)
{
for (j = l; j < n; j++)
{
for (s = 0.0, k = l; k < m; k++)
s += ((double)a[k*m+i] * (double)a[k*m+j]);
f = (s / (double)a[i*n+i]) * g;
for (k = i; k < m; k++)
a[k*m+j] += (float)(f * (double)a[k*m+i]);
}
}
for (j = i; j < m; j++)
a[j*m+i] = (float)((double)a[j*m+i]*g);
}
else
{
for (j = i; j < m; j++)
a[j*m+i] = 0.0;
}
++a[i*n+i];
}
/* diagonalize the bidiagonal form */
for (k = n - 1; k >= 0; k--)
{ /* loop over singular values */
for (its = 0; its < 30; its++)
{ /* loop over allowed iterations */
flag = 1;
for (l = k; l >= 0; l--)
{ /* test for splitting */
nm = l - 1;
if (fabs(rv1[l]) + anorm == anorm)
{
flag = 0;
break;
}
if (fabs((double)d[nm]) + anorm == anorm)
break;
}
if (flag)
{
c = 0.0;
s = 1.0;
for (i = l; i <= k; i++)
{
f = s * rv1[i];
if (fabs(f) + anorm != anorm)
{
g = (double)d[i];
h = PYTHAG(f, g);
d[i] = (float)h;
h = 1.0 / h;
c = g * h;
s = (- f * h);
for (j = 0; j < m; j++)
{
y = (double)a[j*m+nm];
z = (double)a[j*m+i];
a[j*m+nm] = (float)(y * c + z * s);
a[j*m+i] = (float)(z * c - y * s);
}
}
}
}
z = (double)d[k];
if (l == k)
{ /* convergence */
if (z < 0.0)
{ /* make singular value nonnegative */
d[k] = (float)(-z);
for (j = 0; j < n; j++)
v[j*n+k] = (-v[j*n+k]);
}
break;
}
if (its >= 30) {
free((void*) rv1);
fprintf(stderr, "No convergence after 30,000! iterations \n");
return(0);
}
/* shift from bottom 2 x 2 minor */
x = (double)d[l];
nm = k - 1;
y = (double)d[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = PYTHAG(f, 1.0);
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
/* next QR transformation */
c = s = 1.0;
for (j = l; j <= nm; j++)
{
i = j + 1;
g = rv1[i];
y = (double)d[i];
h = s * g;
g = c * g;
z = PYTHAG(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y = y * c;
for (jj = 0; jj < n; jj++)
{
x = (double)v[jj*n+j];
z = (double)v[jj*n+i];
v[jj*n+j] = (float)(x * c + z * s);
v[jj*n+i] = (float)(z * c - x * s);
}
z = PYTHAG(f, h);
d[j] = (float)z;
if (z)
{
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = (c * g) + (s * y);
x = (c * y) - (s * g);
for (jj = 0; jj < m; jj++)
{
y = (double)a[jj*n+j];
z = (double)a[jj*n+i];
a[jj*n+j] = (float)(y * c + z * s);
a[jj*n+i] = (float)(z * c - y * s);
}
}
rv1[l] = 0.0;
rv1[k] = f;
d[k] = (float)x;
}
}
free((void*) rv1);
return(1);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -