📄 similarity.cs
字号:
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using IndexReader = Lucene.Net.Index.IndexReader;
using IndexWriter = Lucene.Net.Index.IndexWriter;
using Term = Lucene.Net.Index.Term;
using SmallFloat = Lucene.Net.Util.SmallFloat;
namespace Lucene.Net.Search
{
/// <summary>Expert: Scoring API.
/// <p>Subclasses implement search scoring.
///
/// <p>The score of query <code>q</code> for document <code>d</code> correlates to the
/// cosine-distance or dot-product between document and query vectors in a
/// <a href="http://en.wikipedia.org/wiki/Vector_Space_Model">
/// Vector Space Model (VSM) of Information Retrieval</a>.
/// A document whose vector is closer to the query vector in that model is scored higher.
///
/// The score is computed as follows:
///
/// <P>
/// <table cellpadding="1" cellspacing="0" border="1" align="center">
/// <tr><td>
/// <table cellpadding="1" cellspacing="0" border="0" align="center">
/// <tr>
/// <td valign="middle" align="right" rowspan="1">
/// score(q,d) =
/// <A HREF="#formula_coord">coord(q,d)</A> ·
/// <A HREF="#formula_queryNorm">queryNorm(q)</A> ·
/// </td>
/// <td valign="bottom" align="center" rowspan="1">
/// <big><big><big>∑</big></big></big>
/// </td>
/// <td valign="middle" align="right" rowspan="1">
/// <big><big>(</big></big>
/// <A HREF="#formula_tf">tf(t in d)</A> ·
/// <A HREF="#formula_idf">idf(t)</A><sup>2</sup> ·
/// <A HREF="#formula_termBoost">t.getBoost()</A> ·
/// <A HREF="#formula_norm">norm(t,d)</A>
/// <big><big>)</big></big>
/// </td>
/// </tr>
/// <tr valigh="top">
/// <td></td>
/// <td align="center"><small>t in q</small></td>
/// <td></td>
/// </tr>
/// </table>
/// </td></tr>
/// </table>
///
/// <p> where
/// <ol>
/// <li>
/// <A NAME="formula_tf"></A>
/// <b>tf(t in d)</b>
/// correlates to the term's <i>frequency</i>,
/// defined as the number of times term <i>t</i> appears in the currently scored document <i>d</i>.
/// Documents that have more occurrences of a given term receive a higher score.
/// The default computation for <i>tf(t in d)</i> in
/// {@link Lucene.Net.Search.DefaultSimilarity#Tf(float) DefaultSimilarity} is:
///
/// <br> <br>
/// <table cellpadding="2" cellspacing="2" border="0" align="center">
/// <tr>
/// <td valign="middle" align="right" rowspan="1">
/// {@link Lucene.Net.Search.DefaultSimilarity#Tf(float) tf(t in d)} =
/// </td>
/// <td valign="top" align="center" rowspan="1">
/// frequency<sup><big>½</big></sup>
/// </td>
/// </tr>
/// </table>
/// <br> <br>
/// </li>
///
/// <li>
/// <A NAME="formula_idf"></A>
/// <b>idf(t)</b> stands for Inverse Document Frequency. This value
/// correlates to the inverse of <i>docFreq</i>
/// (the number of documents in which the term <i>t</i> appears).
/// This means rarer terms give higher contribution to the total score.
/// The default computation for <i>idf(t)</i> in
/// {@link Lucene.Net.Search.DefaultSimilarity#Idf(int, int) DefaultSimilarity} is:
///
/// <br> <br>
/// <table cellpadding="2" cellspacing="2" border="0" align="center">
/// <tr>
/// <td valign="middle" align="right">
/// {@link Lucene.Net.Search.DefaultSimilarity#Idf(int, int) idf(t)} =
/// </td>
/// <td valign="middle" align="center">
/// 1 + log <big>(</big>
/// </td>
/// <td valign="middle" align="center">
/// <table>
/// <tr><td align="center"><small>numDocs</small></td></tr>
/// <tr><td align="center">–––––––––</td></tr>
/// <tr><td align="center"><small>docFreq+1</small></td></tr>
/// </table>
/// </td>
/// <td valign="middle" align="center">
/// <big>)</big>
/// </td>
/// </tr>
/// </table>
/// <br> <br>
/// </li>
///
/// <li>
/// <A NAME="formula_coord"></A>
/// <b>coord(q,d)</b>
/// is a score factor based on how many of the query terms are found in the specified document.
/// Typically, a document that contains more of the query's terms will receive a higher score
/// than another document with fewer query terms.
/// This is a search time factor computed in
/// {@link #Coord(int, int) coord(q,d)}
/// by the Similarity in effect at search time.
/// <br> <br>
/// </li>
///
/// <li><b>
/// <A NAME="formula_queryNorm"></A>
/// queryNorm(q)
/// </b>
/// is a normalizing factor used to make scores between queries comparable.
/// This factor does not affect document ranking (since all ranked documents are multiplied by the same factor),
/// but rather just attempts to make scores from different queries (or even different indexes) comparable.
/// This is a search time factor computed by the Similarity in effect at search time.
///
/// The default computation in
/// {@link Lucene.Net.Search.DefaultSimilarity#QueryNorm(float) DefaultSimilarity}
/// is:
/// <br> <br>
/// <table cellpadding="1" cellspacing="0" border="0" align="center">
/// <tr>
/// <td valign="middle" align="right" rowspan="1">
/// queryNorm(q) =
/// {@link Lucene.Net.Search.DefaultSimilarity#QueryNorm(float) queryNorm(sumOfSquaredWeights)}
/// =
/// </td>
/// <td valign="middle" align="center" rowspan="1">
/// <table>
/// <tr><td align="center"><big>1</big></td></tr>
/// <tr><td align="center"><big>
/// ––––––––––––––
/// </big></td></tr>
/// <tr><td align="center">sumOfSquaredWeights<sup><big>½</big></sup></td></tr>
/// </table>
/// </td>
/// </tr>
/// </table>
/// <br> <br>
///
/// The sum of squared weights (of the query terms) is
/// computed by the query {@link Lucene.Net.Search.Weight} object.
/// For example, a {@link Lucene.Net.Search.BooleanQuery boolean query}
/// computes this value as:
///
/// <br> <br>
/// <table cellpadding="1" cellspacing="0" border="0"n align="center">
/// <tr>
/// <td valign="middle" align="right" rowspan="1">
/// {@link Lucene.Net.Search.Weight#SumOfSquaredWeights() sumOfSquaredWeights} =
/// {@link Lucene.Net.Search.Query#GetBoost() q.getBoost()} <sup><big>2</big></sup>
/// ·
/// </td>
/// <td valign="bottom" align="center" rowspan="1">
/// <big><big><big>∑</big></big></big>
/// </td>
/// <td valign="middle" align="right" rowspan="1">
/// <big><big>(</big></big>
/// <A HREF="#formula_idf">idf(t)</A> ·
/// <A HREF="#formula_termBoost">t.getBoost()</A>
/// <big><big>) <sup>2</sup> </big></big>
/// </td>
/// </tr>
/// <tr valigh="top">
/// <td></td>
/// <td align="center"><small>t in q</small></td>
/// <td></td>
/// </tr>
/// </table>
/// <br> <br>
///
/// </li>
///
/// <li>
/// <A NAME="formula_termBoost"></A>
/// <b>t.getBoost()</b>
/// is a search time boost of term <i>t</i> in the query <i>q</i> as
/// specified in the query text
/// (see <A HREF="../../../../../queryparsersyntax.html#Boosting a Term">query syntax</A>),
/// or as set by application calls to
/// {@link Lucene.Net.Search.Query#SetBoost(float) setBoost()}.
/// Notice that there is really no direct API for accessing a boost of one term in a multi term query,
/// but rather multi terms are represented in a query as multi
/// {@link Lucene.Net.Search.TermQuery TermQuery} objects,
/// and so the boost of a term in the query is accessible by calling the sub-query
/// {@link Lucene.Net.Search.Query#GetBoost() getBoost()}.
/// <br> <br>
/// </li>
///
/// <li>
/// <A NAME="formula_norm"></A>
/// <b>norm(t,d)</b> encapsulates a few (indexing time) boost and length factors:
///
/// <ul>
/// <li><b>Document boost</b> - set by calling
/// {@link Lucene.Net.Documents.Document#SetBoost(float) doc.setBoost()}
/// before adding the document to the index.
/// </li>
/// <li><b>Field boost</b> - set by calling
/// {@link Lucene.Net.Documents.Fieldable#SetBoost(float) field.setBoost()}
/// before adding the field to a document.
/// </li>
/// <li>{@link #LengthNorm(String, int) <b>lengthNorm</b>(field)} - computed
/// when the document is added to the index in accordance with the number of tokens
/// of this field in the document, so that shorter fields contribute more to the score.
/// LengthNorm is computed by the Similarity class in effect at indexing.
/// </li>
/// </ul>
///
/// <p>
/// When a document is added to the index, all the above factors are multiplied.
/// If the document has multiple fields with the same name, all their boosts are multiplied together:
///
/// <br> <br>
/// <table cellpadding="1" cellspacing="0" border="0"n align="center">
/// <tr>
/// <td valign="middle" align="right" rowspan="1">
/// norm(t,d) =
/// {@link Lucene.Net.Documents.Document#GetBoost() doc.getBoost()}
/// ·
/// {@link #LengthNorm(String, int) lengthNorm(field)}
/// ·
/// </td>
/// <td valign="bottom" align="center" rowspan="1">
/// <big><big><big>∏</big></big></big>
/// </td>
/// <td valign="middle" align="right" rowspan="1">
/// {@link Lucene.Net.Documents.Fieldable#GetBoost() f.getBoost}()
/// </td>
/// </tr>
/// <tr valigh="top">
/// <td></td>
/// <td align="center"><small>field <i><b>f</b></i> in <i>d</i> named as <i><b>t</b></i></small></td>
/// <td></td>
/// </tr>
/// </table>
/// <br> <br>
/// However the resulted <i>norm</i> value is {@link #EncodeNorm(float) encoded} as a single byte
/// before being stored.
/// At search time, the norm byte value is read from the index
/// {@link Lucene.Net.Store.Directory directory} and
/// {@link #DecodeNorm(byte) decoded} back to a float <i>norm</i> value.
/// This encoding/decoding, while reducing index size, comes with the price of
/// precision loss - it is not guaranteed that decode(encode(x)) = x.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -