⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fitabmon.gml

📁 开放源码的编译器open watcom 1.6.0版的源代码
💻 GML
📖 第 1 页 / 共 3 页
字号:
.note MIN0
I&arrow.MIN0(I,...)
.note I1MIN0
I1&arrow.I1MIN0(I1,...) &dagger.
.note I2MIN0
I2&arrow.I2MIN0(I2,...) &dagger.
.note AMIN1
R&arrow.AMIN1(R,...)
.note DMIN1
D&arrow.DMIN1(D,...)
.note AMIN0
R&arrow.AMIN0(I,...)
.note MIN1
I&arrow.MIN1(R,...)
.endnote
.*
.cp 18
.section Length
.*
.begnote $setptnt 12
.note Definition:
Length of character entity
.nameuse
.ix 'intrinsic function' LEN
.ix LEN
.note LEN
I&arrow.LEN(CH)
.note Notes:
The argument to the LEN function need not be defined.
.endnote
.*
.cp 18
.section Length Without Trailing Blanks
.*
.begnote $setptnt 12
.note Definition:
Length of character entity excluding trailing blanks
.nameuse
.ix 'intrinsic function' LENTRIM
.ix LENTRIM
.note LENTRIM
I&arrow.LENTRIM(CH)
.endnote
.*
.cp 18
.section Index of a Substring
.*
.begnote $setptnt 12
.note Definition:
.mono index(a1,a2)
is location of substring
.mono a2
in string
.mono a1
.nameuse
.ix 'intrinsic function' INDEX
.ix INDEX
.note INDEX
I&arrow.INDEX(CH,CH)
.note Notes:
INDEX(x,y) returns the starting position of a substring in x which is
identical to y.
The position of the first such substring is returned.
If y is not contained in x, zero is returned.
.endnote
.*
.cp 18
.section Imaginary Part of Complex Number
.*
.begnote $setptnt 12
.note Definition:
.mono ai
.nameuse
.ix 'generic function' IMAG
.ix 'intrinsic function' AIMAG
.ix 'intrinsic function' DIMAG
.ix AIMAG
.ix DIMAG
.note IMAG &generic. &dagger.
R&arrow.IMAG(C),
D&arrow.IMAG(Z)
.note AIMAG
R&arrow.AIMAG(C)
.note DIMAG
D&arrow.DIMAG(Z) &dagger.
.note Notes:
.im finote6
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Conjugate of a Complex Number
.*
.begnote $setptnt 12
.note Definition:
.mono (ar,-ai)
.nameuse
.ix 'generic function' CONJG
.ix 'intrinsic function' CONJG
.ix 'intrinsic function' DCONJG
.ix CONJG
.ix DCONJD
.note CONJG &generic. &dagger.
C&arrow.CONJG(C),
Z&arrow.CONJG(Z)
.note CONJG
C&arrow.CONJG(C)
.note DCONJG
Z&arrow.DCONJG(Z) &dagger.
.note Notes:
.im finote6
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Square Root
.*
.begnote $setptnt 12
.note Definition:
.mono a**1/2
.nameuse
.ix 'generic function' SQRT
.ix 'intrinsic function' SQRT
.ix 'intrinsic function' DSQRT
.ix 'intrinsic function' CSQRT
.ix 'intrinsic function' CDSQRT
.ix SQRT
.ix DSQRT
.ix CSQRT
.ix CDSQRT
.note SQRT &generic.
R&arrow.SQRT(R),
D&arrow.SQRT(D),
C&arrow.SQRT(C),
Z&arrow.SQRT(Z) &dagger.
.note SQRT
R&arrow.SQRT(R)
.note DSQRT
D&arrow.DSQRT(D)
.note CSQRT
C&arrow.CSQRT(C)
.note CDSQRT
Z&arrow.CDSQRT(Z) &dagger.
.note Notes:
The argument to SQRT must be >= 0.
The result of CSQRT and CDSQRT is the principal value with the
real part >= 0.
When the real part of the result is 0, the imaginary part is >= 0.
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Exponential
.*
.begnote $setptnt 12
.note Definition:
.mono e**a
.nameuse
.ix 'generic function' EXP
.ix 'intrinsic function' EXP
.ix 'intrinsic function' DEXP
.ix 'intrinsic function' CEXP
.ix 'intrinsic function' CDEXP
.ix EXP
.ix DEXP
.ix CEXP
.ix CDEXP
.note EXP &generic.
R&arrow.EXP(R),
D&arrow.EXP(D),
C&arrow.EXP(C),
Z&arrow.EXP(Z) &dagger.
.note EXP
R&arrow.EXP(R)
.note DEXP
D&arrow.DEXP(D)
.note CEXP
C&arrow.CEXP(C)
.note CDEXP
Z&arrow.CDEXP(Z) &dagger.
.note Notes:
.im finote8
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Natural Logarithm
.*
.begnote $setptnt 12
.note Definition:
.millust begin
log (a)
   e
.millust end
.nameuse
.ix 'generic function' LOG
.ix 'intrinsic function' ALOG
.ix 'intrinsic function' DLOG
.ix 'intrinsic function' CLOG
.ix 'intrinsic function' CDLOG
.ix ALOG
.ix DLOG
.ix CLOG
.ix CDLOG
.note LOG &generic.
R&arrow.LOG(R),
D&arrow.LOG(D),
C&arrow.LOG(C),
Z&arrow.LOG(Z) &dagger.
.note ALOG
R&arrow.ALOG(R)
.note DLOG
D&arrow.DLOG(D)
.note CLOG
C&arrow.CLOG(C)
.note CDLOG
Z&arrow.CDLOG(Z) &dagger.
.note Notes:
The value of
.id a
must be > 0.
The argument of CLOG and CDLOG must not be (0,0).
The result of CLOG and CDLOG is such that -&pi. < imaginary part of
the result <= &pi..
The imaginary part of the result is &pi. only when the real part of the
argument is < 0 and the imaginary part of the argument = 0.
.np
.im finote8
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Common Logarithm
.*
.begnote $setptnt 12
.note Definition:
.millust begin
log  (a)
   10
.millust end
.nameuse
.ix 'generic function' LOG10
.ix 'intrinsic function' ALOG10
.ix 'intrinsic function' DLOG10
.ix ALOG10
.ix DLOG10
.note LOG10 &generic.
R&arrow.LOG10(R),
D&arrow.LOG10(D)
.note ALOG10
R&arrow.ALOG10(R)
.note DLOG10
D&arrow.DLOG10(D)
.endnote
.*
.cp 18
.section Sine
.*
.begnote $setptnt 12
.note Definition:
.mono sin(a)
.nameuse
.ix 'generic function' SIN
.ix 'intrinsic function' SIN
.ix 'intrinsic function' DSIN
.ix 'intrinsic function' CSIN
.ix 'intrinsic function' CDSIN
.ix SIN
.ix DSIN
.ix CSIN
.ix CDSIN
.note SIN &generic.
R&arrow.SIN(R),
D&arrow.SIN(D),
C&arrow.SIN(C),
Z&arrow.SIN(Z) &dagger.
.note SIN
R&arrow.SIN(R)
.note DSIN
D&arrow.DSIN(D)
.note CSIN
C&arrow.CSIN(C)
.note CDSIN
Z&arrow.CDSIN(Z) &dagger.
.note Notes:
.im finote7
.np
.im finote8
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Cosine
.*
.begnote $setptnt 12
.note Definition:
.mono cos(a)
.nameuse
.ix 'generic function' COS
.ix 'intrinsic function' COS
.ix 'intrinsic function' DCOS
.ix 'intrinsic function' CCOS
.ix 'intrinsic function' CDCOS
.ix COS
.ix DCOS
.ix CCOS
.ix CDCOS
.note COS &generic.
R&arrow.COS(R),
D&arrow.COS(D),
C&arrow.COS(C),
Z&arrow.COS(Z) &dagger.
.note COS
R&arrow.COS(R)
.note DCOS
D&arrow.DCOS(D)
.note CCOS
C&arrow.CCOS(C)
.note CDCOS
Z&arrow.CDCOS(Z) &dagger.
.note Notes:
.im finote7
.np
.im finote8
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Tangent
.*
.begnote $setptnt 12
.note Definition:
.mono tan(a)
.nameuse
.ix 'generic function' TAN
.ix 'intrinsic function' TAN
.ix 'intrinsic function' DTAN
.ix TAN
.ix DTAN
.note TAN &generic.
R&arrow.TAN(R),
D&arrow.TAN(D)
.note TAN
R&arrow.TAN(R)
.note DTAN
D&arrow.DTAN(D)
.note Notes:
.im finote7
.endnote
.*
.cp 18
.section Cotangent
.*
.begnote $setptnt 12
.note Definition:
.mono cotan(a)
.nameuse
.ix 'generic function' COTAN
.ix 'intrinsic function' COTAN
.ix 'intrinsic function' DCOTAN
.ix COTAN
.ix DCOTAN
.note COTAN &generic. &dagger.
R&arrow.COTAN(R),
D&arrow.COTAN(D)
.note COTAN
R&arrow.COTAN(R) &dagger.
.note DCOTAN
D&arrow.DCOTAN(D) &dagger.
.note Notes:
.im finote7
.np
&dagger. is an extension to FORTRAN 77.
.endnote
.*
.cp 18
.section Arcsine
.*
.begnote $setptnt 12
.note Definition:
.mono arcsin(a)
.nameuse
.ix 'generic function' ASIN
.ix 'intrinsic function' ASIN
.ix 'intrinsic function' DASIN
.ix ASIN
.ix DASIN
.note ASIN &generic.
R&arrow.ASIN(R),
D&arrow.ASIN(D)
.note ASIN
R&arrow.ASIN(R)
.note DASIN
D&arrow.DASIN(D)
.note Notes:
The absolute value of the argument of ASIN and DASIN must be <= 1.
The result is such that -&pi./2 <= result <= &pi./2.
.endnote
.*
.cp 18
.section Arccosine
.*
.begnote $setptnt 12
.note Definition:
.mono arccos(a)
.nameuse
.ix 'generic function' ACOS
.ix 'intrinsic function' ACOS
.ix 'intrinsic function' DACOS
.ix ACOS
.ix DACOS
.note ACOS &generic.
R&arrow.ACOS(R),
D&arrow.ACOS(D)
.note ACOS
R&arrow.ACOS(R)
.note DACOS
D&arrow.DACOS(D)
.note Notes:
The absolute value of the argument of ACOS and DACOS must be <= 1.
The result is such that 0 <= result <= &pi..
.endnote
.*
.cp 18
.section Arctangent
.*
.begnote $setptnt 12
.note Definition:
.mono arctan(a)
.nameuse
.ix 'generic function' ATAN
.ix 'generic function' ATAN2
.ix 'intrinsic function' ATAN
.ix 'intrinsic function' DATAN
.ix 'intrinsic function' ATAN2
.ix 'intrinsic function' DATAN2
.ix ATAN
.ix DATAN
.ix ATAN2
.ix DATAN2
.note ATAN &generic.
R&arrow.ATAN(R),
D&arrow.ATAN(D)
.note ATAN
R&arrow.ATAN(R)
.note DATAN
D&arrow.DATAN(D)
.note Definition:
.mono arctan(a1/a2)
.nameuse
.note ATAN2 &generic.
R&arrow.ATAN2(R,R),
D&arrow.ATAN2(D,D)
.note ATAN2
R&arrow.ATAN2(R,R)
.note DATAN2
D&arrow.DATAN2(D,D)
.note Notes:
The result of ATAN and DATAN is such that -&pi./2 <= result <= &pi./2.
If the value of the first argument of ATAN2 and DATAN2 is positive
then the result is positive.
If the value of the first argument is 0, the result is 0 if the second
argument is positive and &pi. if the second argument is negative.
If the value of the first argument is negative, the result is negative.
If the value of the second argument is 0, the absolute value of the
result is &pi./2.
The arguments must not both be 0.
The result of ATAN2 and DATAN2 is such that -&pi. < result <= &pi..
.endnote
.*
.cp 18
.section Hyperbolic Sine
.*
.begnote $setptnt 12
.note Definition:
.mono sinh(a)
.nameuse
.ix 'generic function' SINH
.ix 'intrinsic function' SINH
.ix 'intrinsic function' DSINH
.ix SINH
.ix DSINH
.note SINH &generic.
R&arrow.SINH(R)
D&arrow.SINH(D)
.note SINH
R&arrow.SINH(R)
.note DSINH
D&arrow.DSINH(D)
.endnote
.*
.cp 18
.section Hyperbolic Cosine
.*
.begnote $setptnt 12
.note Definition:
.mono cosh(a)
.nameuse
.ix 'generic function' COSH
.ix 'intrinsic function' COSH
.ix 'intrinsic function' DCOSH
.ix COSH
.ix DCOSH
.note COSH &generic.
R&arrow.COSH(R),
D&arrow.COSH(D)
.note COSH
R&arrow.COSH(R)
.note DCOSH
D&arrow.DCOSH(D)
.endnote
.*
.cp 18
.section Hyperbolic Tangent
.*
.begnote $setptnt 12
.note Definition:
.mono tanh(a)
.nameuse
.ix 'generic function' TANH
.ix 'intrinsic function' TANH
.ix 'intrinsic function' DTANH
.ix TANH
.ix DTANH
.note TANH &generic.
R&arrow.TANH(R),
D&arrow.TANH(D)
.note TANH
R&arrow.TANH(R)
.note DTANH
D&arrow.DTANH(D)
.endnote
.*
.cp 18
.section Gamma Function
.*
.begnote $setptnt 12
.note Definition:
.mono gamma(a)
.nameuse
.ix 'generic function' GAMMA
.ix 'intrinsic function' GAMMA
.ix 'intrinsic function' DGAMMA
.ix GAMMA
.ix DGAMMA
.note GAMMA &generic.
R&arrow.GAMMA(R),
D&arrow.GAMMA(D)
.note GAMMA
R&arrow.GAMMA(R)
.note DGAMMA
D&arrow.DGAMMA(D)
.endnote
.*
.cp 18
.section Natural Log of Gamma Function
.*
.begnote $setptnt 12
.note Definition:
.millust begin
log (gamma(a))
   e
.millust end
.nameuse
.ix 'generic function' GAMMA
.ix 'intrinsic function' ALGAMA

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -