📄 3ds.cpp
字号:
{
int index = 0;
// 读入一个字节的数据
fread(pBuffer, 1, 1, m_FilePointer);
// 直到结束
while (*(pBuffer + index++) != 0) {
// 读入一个字符直到NULL
fread(pBuffer + index, 1, 1, m_FilePointer);
}
// 返回字符串的长度
return strlen(pBuffer) + 1;
}
// 下面的函数读入RGB颜色
void CLoad3DS::ReadColorChunk(tMaterialInfo *pMaterial, tChunk *pChunk)
{
// 读入颜色块信息
ReadChunk(m_TempChunk);
// 读入RGB颜色
m_TempChunk->bytesRead += fread(pMaterial->color, 1, m_TempChunk->length - m_TempChunk->bytesRead, m_FilePointer);
// 增加读入的字节数
pChunk->bytesRead += m_TempChunk->bytesRead;
}
// 下面的函数读入顶点索引
void CLoad3DS::ReadVertexIndices(t3DObject *pObject, tChunk *pPreviousChunk)
{
unsigned short index = 0; // 用于读入当前面的索引
// 读入该对象中面的数目
pPreviousChunk->bytesRead += fread(&pObject->numOfFaces, 1, 2, m_FilePointer);
// 分配所有面的存储空间,并初始化结构
pObject->pFaces = new tFace [pObject->numOfFaces];
memset(pObject->pFaces, 0, sizeof(tFace) * pObject->numOfFaces);
// 遍历对象中所有的面
for(int i = 0; i < pObject->numOfFaces; i++)
{
for(int j = 0; j < 4; j++)
{
// 读入当前面的第一个点
pPreviousChunk->bytesRead += fread(&index, 1, sizeof(index), m_FilePointer);
if(j < 3)
{
// 将索引保存在面的结构中
pObject->pFaces[i].vertIndex[j] = index;
}
}
}
}
// 下面的函数读入对象的UV坐标
void CLoad3DS::ReadUVCoordinates(t3DObject *pObject, tChunk *pPreviousChunk)
{
// 为了读入对象的UV坐标,首先需要读入UV坐标的数量,然后才读入具体的数据
// 读入UV坐标的数量
pPreviousChunk->bytesRead += fread(&pObject->numTexVertex, 1, 2, m_FilePointer);
// 分配保存UV坐标的内存空间
pObject->pTexVerts = new CVector2 [pObject->numTexVertex];
// 读入纹理坐标
pPreviousChunk->bytesRead += fread(pObject->pTexVerts, 1, pPreviousChunk->length - pPreviousChunk->bytesRead, m_FilePointer);
}
// 读入对象的顶点
void CLoad3DS::ReadVertices(t3DObject *pObject, tChunk *pPreviousChunk)
{
// 在读入实际的顶点之前,首先必须确定需要读入多少个顶点。
// 读入顶点的数目
pPreviousChunk->bytesRead += fread(&(pObject->numOfVerts), 1, 2, m_FilePointer);
// 分配顶点的存储空间,然后初始化结构体
pObject->pVerts = new CVector3 [pObject->numOfVerts];
memset(pObject->pVerts, 0, sizeof(CVector3) * pObject->numOfVerts);
// 读入顶点序列
pPreviousChunk->bytesRead += fread(pObject->pVerts, 1, pPreviousChunk->length - pPreviousChunk->bytesRead, m_FilePointer);
// 现在已经读入了所有的顶点。
// 因为3D Studio Max的模型的Z轴是指向上的,因此需要将y轴和z轴翻转过来。
// 具体的做法是将Y轴和Z轴交换,然后将Z轴反向。
// 遍历所有的顶点
for(int i = 0; i < pObject->numOfVerts; i++)
{
// 保存Y轴的值
float fTempY = pObject->pVerts[i].y;
// 设置Y轴的值等于Z轴的值
pObject->pVerts[i].y = pObject->pVerts[i].z;
// 设置Z轴的值等于-Y轴的值
pObject->pVerts[i].z = -fTempY;
}
}
// 下面的函数读入对象的材质名称
void CLoad3DS::ReadObjectMaterial(t3DModel *pModel, t3DObject *pObject, tChunk *pPreviousChunk)
{
char strMaterial[255] = {0}; // 用来保存对象的材质名称
int buffer[50000] = {0}; // 用来读入不需要的数据
// 材质或者是颜色,或者是对象的纹理,也可能保存了象明亮度、发光度等信息。
// 下面读入赋予当前对象的材质名称
pPreviousChunk->bytesRead += GetString(strMaterial);
// 遍历所有的纹理
for(int i = 0; i < pModel->numOfMaterials; i++)
{
//如果读入的纹理与当前的纹理名称匹配
if(strcmp(strMaterial, pModel->pMaterials[i].strName) == 0)
{
// 设置材质ID
pObject->materialID = i;
// 判断是否是纹理映射,如果strFile是一个长度大于1的字符串,则是纹理
if(strlen(pModel->pMaterials[i].strFile) > 0) {
// 设置对象的纹理映射标志
pObject->bHasTexture = true;
}
break;
}
else
{
// 如果该对象没有材质,则设置ID为-1
pObject->materialID = -1;
}
}
pPreviousChunk->bytesRead += fread(buffer, 1, pPreviousChunk->length - pPreviousChunk->bytesRead, m_FilePointer);
}
// 下面的这些函数主要用来计算顶点的法向量,顶点的法向量主要用来计算光照
// 下面的宏定义计算一个矢量的长度
#define Mag(Normal) (sqrt(Normal.x*Normal.x + Normal.y*Normal.y + Normal.z*Normal.z))
// 下面的函数求两点决定的矢量
CVector3 Vector(CVector3 vPoint1, CVector3 vPoint2)
{
CVector3 vVector;
vVector.x = vPoint1.x - vPoint2.x;
vVector.y = vPoint1.y - vPoint2.y;
vVector.z = vPoint1.z - vPoint2.z;
return vVector;
}
// 下面的函数两个矢量相加
CVector3 AddVector(CVector3 vVector1, CVector3 vVector2)
{
CVector3 vResult;
vResult.x = vVector2.x + vVector1.x;
vResult.y = vVector2.y + vVector1.y;
vResult.z = vVector2.z + vVector1.z;
return vResult;
}
// 下面的函数处理矢量的缩放
CVector3 DivideVectorByScaler(CVector3 vVector1, float Scaler)
{
CVector3 vResult;
vResult.x = vVector1.x / Scaler;
vResult.y = vVector1.y / Scaler;
vResult.z = vVector1.z / Scaler;
return vResult;
}
// 下面的函数返回两个矢量的叉积
CVector3 Cross(CVector3 vVector1, CVector3 vVector2)
{
CVector3 vCross;
vCross.x = ((vVector1.y * vVector2.z) - (vVector1.z * vVector2.y));
vCross.y = ((vVector1.z * vVector2.x) - (vVector1.x * vVector2.z));
vCross.z = ((vVector1.x * vVector2.y) - (vVector1.y * vVector2.x));
return vCross;
}
// 下面的函数规范化矢量
CVector3 Normalize(CVector3 vNormal)
{
double Magnitude;
Magnitude = Mag(vNormal); // 获得矢量的长度
vNormal.x /= (float)Magnitude;
vNormal.y /= (float)Magnitude;
vNormal.z /= (float)Magnitude;
return vNormal;
}
// 下面的函数用于计算对象的法向量
void CLoad3DS::ComputeNormals(t3DModel *pModel)//::为静态成员,是类中所有对象共享的成员,必须初始化
{
CVector3 vVector1, vVector2, vNormal, vPoly[3];
// 如果模型中没有对象,则返回
if(pModel->numOfObjects <= 0)
return;
// 遍历模型中所有的对象
for(int index = 0; index < pModel->numOfObjects; index++)
{
// 获得当前的对象
t3DObject *pObject = &(pModel->pObject[index]);
// 分配需要的存储空间
CVector3 *pNormals = new CVector3 [pObject->numOfFaces];
CVector3 *pTempNormals = new CVector3 [pObject->numOfFaces];
pObject->pNormals = new CVector3 [pObject->numOfVerts];
// 遍历对象的所有面
for(int i=0; i < pObject->numOfFaces; i++)
{
vPoly[0] = pObject->pVerts[pObject->pFaces[i].vertIndex[0]];
vPoly[1] = pObject->pVerts[pObject->pFaces[i].vertIndex[1]];
vPoly[2] = pObject->pVerts[pObject->pFaces[i].vertIndex[2]];
// 计算面的法向量
vVector1 = Vector(vPoly[0], vPoly[2]); // 获得多边形的矢量
vVector2 = Vector(vPoly[2], vPoly[1]); // 获得多边形的第二个矢量
vNormal = Cross(vVector1, vVector2); // 获得两个矢量的叉积
pTempNormals[i] = vNormal; // 保存非规范化法向量
vNormal = Normalize(vNormal); // 规范化获得的叉积
pNormals[i] = vNormal; // 将法向量添加到法向量列表中
}
// 下面求顶点法向量
CVector3 vSum = {0.0, 0.0, 0.0};
CVector3 vZero = vSum;
int shared=0;
// 遍历所有的顶点
for (i = 0; i < pObject->numOfVerts; i++)
{
for (int j = 0; j < pObject->numOfFaces; j++) // 遍历所有的三角形面
{ // 判断该点是否与其它的面共享
if (pObject->pFaces[j].vertIndex[0] == i ||
pObject->pFaces[j].vertIndex[1] == i ||
pObject->pFaces[j].vertIndex[2] == i)
{
vSum = AddVector(vSum, pTempNormals[j]);
shared++;
}
}
pObject->pNormals[i] = DivideVectorByScaler(vSum, float(-shared));
// 规范化最后的顶点法向
pObject->pNormals[i] = Normalize(pObject->pNormals[i]);
vSum = vZero;
shared = 0;
}
// 释放存储空间,开始下一个对象
delete [] pTempNormals;
delete [] pNormals;
}
}
/*
值得注意的是OpenGL的坐标系和3DS Max的坐标系是不同的,3D Studio Max中的模型的Z轴是指向上的,
而OpenGL中模型的Z轴是垂直屏幕指向用户的,因此需要将顶点的坐标的y和z翻转过来。
什么是块?
块ID是标识该块中数据类型的独一无二的代码,同时也标识是否存在子块。它占用了两个字节。
块的长度表示的是紧跟在该块后续的数据的长度。它占用了四个字节。
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -