⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cfw.c

📁 这是一下精电5.7寸屏在WINCE5.0下的显示驱动
💻 C
📖 第 1 页 / 共 4 页
字号:
		break;

	case SYSINTR_SDMMC:
		s2410INT->rINTMSK &= ~BIT_MMC;
		//RETAILMSG(1,(TEXT("::: SYSINTR_SDMMC    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_SDMMC_SDIO_INTERRUPT:
		s2410INT->rINTMSK &= ~BIT_MMC;
		//RETAILMSG(1,(TEXT("::: SYSINTR_SDMMC_SDIO_INTERRUPT    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_SDMMC_CARD_DETECT:
		s2410IOP->rEINTMASK &= ~(1 << 18);
		s2410INT->rINTMSK   &= ~BIT_EINT8_23;
		//RETAILMSG(1,(TEXT("::: SYSINTR_SDMMC_CARD_DETECT    OEMInterruptDone\r\n")));
		break;        

    case SYSINTR_TOUCH:
        /*
         * Nothing has to be done here as interrupts are masked and unmasked by the touch
         * handler in the HAL.
         */
		s2410INT->rINTMSK &= ~BIT_TIMER1;
        break;

    case SYSINTR_TOUCH_CHANGED:
        /*
         * Nothing has to be done here as interrupts are masked and unmasked by the touch
         * handler in the HAL.
         */
		s2410INT->rINTMSK &= ~BIT_ADC;
		s2410INT->rINTSUBMSK &= ~INTSUB_TC;
		//RETAILMSG(0,(TEXT("OEMInterruptDone:TOUCH CHANGED\n\r\n")));
        break;

	case SYSINTR_KEYBOARD:
	        //modified by m.j.y
	        //清除中断
	        s2410INT->rSRCPND = (BIT_EINT0 | BIT_EINT2 | BIT_EINT8_23);
	        if (s2410INT->rINTPND & BIT_EINT0) s2410INT->rINTPND = BIT_EINT0;
		if (s2410INT->rINTPND & BIT_EINT2) s2410INT->rINTPND = BIT_EINT2;
		//因为BIT_EINT8_23是中断复用位,所以以下的逻辑判断无意义,反而有可能执行不到
		//if (s2410INT->rINTPND & BIT_EINT8_23) 
		{
			s2410INT->rINTPND = BIT_EINT8_23;
			//if (s2410IOP->rEINTPEND & (1<<19))
				s2410IOP->rEINTPEND = (1<<19);
			//if (s2410IOP->rEINTPEND & (1<<11))
				s2410IOP->rEINTPEND = (1<<11);
		}
		
	        if (s2410INT->rINTMSK & BIT_EINT0)
				s2410INT->rINTMSK &= ~BIT_EINT0;
	        if (s2410INT->rINTMSK & BIT_EINT2)
				s2410INT->rINTMSK &= ~BIT_EINT2;
		//因为BIT_EINT8_23是中断复用位,所以以下的逻辑判断无意义,反而有可能执行不到
		//if (s2410INT->rINTMSK & BIT_EINT8_23)
		{
			s2410IOP->rEINTMASK &= ~(1<<19);
			s2410IOP->rEINTMASK &= ~(1<<11);
			s2410INT->rINTMSK &= ~BIT_EINT8_23;
		}
		break;

	case SYSINTR_SERIAL:
		s2410INT->rINTMSK    &= ~BIT_UART0;
		s2410INT->rINTSUBMSK &= ~INTSUB_RXD0;
		break;

	case SYSINTR_IR:
		s2410INT->rINTMSK    &= ~BIT_UART2;
		s2410INT->rINTSUBMSK &= ~INTSUB_RXD2;
		break;

	case SYSINTR_AUDIO:
		// DMA1 is for audio input.
		// DMA2 is for audio output.
		s2410INT->rSRCPND = (BIT_DMA1 | BIT_DMA2); 
		if (s2410INT->rINTPND & BIT_DMA1) s2410INT->rINTPND = BIT_DMA1;
		if (s2410INT->rINTPND & BIT_DMA2) s2410INT->rINTPND = BIT_DMA2;
        	s2410INT->rINTMSK &= ~BIT_DMA1;
        	s2410INT->rINTMSK &= ~BIT_DMA2;
		break;

	case SYSINTR_ADC:
		break;

	case SYSINTR_PCMCIA_LEVEL:
		s2410INT->rSRCPND	= BIT_EINT8_23;
		if (s2410INT->rINTPND & BIT_EINT8_23) s2410INT->rINTPND = BIT_EINT8_23; 
		s2410INT->rINTMSK   &= ~BIT_EINT8_23;
		s2410IOP->rEINTMASK &= ~(1<<8);
		//RETAILMSG(1,(TEXT("::: SYSINTR_PCMCIA_LEVEL    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_PCMCIA_EDGE:
		//RETAILMSG(1,(TEXT("::: SYSINTR_PCMCIA_EDGE    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_PCMCIA_STATE:
		s2410INT->rINTMSK &= ~BIT_EINT3;
		//RETAILMSG(1,(TEXT("::: SYSINTR_PCMCIA_STATE    OEMInterruptDone\r\n")));
		break;

	case SYSINTR_ETHER:
		s2410INT->rINTMSK   &= ~BIT_EINT8_23;
		s2410IOP->rEINTMASK &= ~0x200;
		break;
			        
	case SYSINTR_DM9000:
		s2410INT->rINTMSK   &= ~BIT_EINT8_23;
		s2410IOP->rEINTMASK &= ~0x4000;
		break;
			        
	case SYSINTR_USB:
		s2410INT->rINTMSK &= ~BIT_USBH;
		break;

	case SYSINTR_USBD:
		s2410INT->rINTMSK &= ~BIT_USBD;
		//RETAILMSG(1,(TEXT("::: SYSINTR_USBD    OEMInterruptDone\r\n")));
		break;
        // modified by m.j.y
	/* case SYSINTR_POWER:
		s2410INT->rSRCPND = BIT_EINT0;
		// S3C2410X Developer Notice (page 4) warns against writing a 1 to a 0 bit in the INTPND register.
		if (s2410INT->rINTPND & BIT_EINT0) s2410INT->rINTPND = BIT_EINT0;
		s2410INT->rINTMSK &= ~BIT_EINT0;
		s2410INT->rSRCPND = BIT_EINT2;
		// S3C2410X Developer Notice (page 4) warns against writing a 1 to a 0 bit in the INTPND register.
		if (s2410INT->rINTPND & BIT_EINT2) s2410INT->rINTPND = BIT_EINT2;
		s2410INT->rINTMSK &= ~BIT_EINT2;
		break;
*/
	}
    INTERRUPTS_ON();	
}


//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
BOOL 
OEMGetExtensionDRAM(
    LPDWORD lpMemStart, 
    LPDWORD lpMemLen
    ) 
{
    return FALSE; // no extension DRAM
}


//------------------------------------------------------------------------------
//
//  OEMQueryPerformanceCounter
//  
//      The OEMQueryPerformanceCounter function retrieves the current value of 
//      the high-resolution performance counter, if one exists. 
//  
//  BOOL QueryPerformanceCounter(
//  
//      LARGE_INTEGER  *lpliPerformanceCount    // address of current counter value
//     );   
//  
//  Parameters
//  
//  lpliPerformanceCount
//  
//      Points to a variable that the function sets, in counts, to the current 
//      performance-counter value. If the installed hardware does not support 
//      a high-resolution performance counter, this parameter can be to zero. 
//  
//  Return Value
//  
//      If the installed hardware supports a high-resolution performance 
//      counter, the return value is TRUE.
//      If the installed hardware does not support a high-resolution 
//      performance counter, the return value is FALSE.   
//  
//  If this function is implemented by the OEM, the pointer pQueryPerformanceCounter
//  should be initialized as follows:
//  
//  BOOL (*pQueryPerformanceCounter)(LARGE_INTEGER *lpliPerformanceCount)=OEMQueryPerformanceCounter;
//
//------------------------------------------------------------------------------
BOOL 
OEMQueryPerformanceCounter(
    LARGE_INTEGER *lpliPerformanceCount
    )
{
    extern DWORD PerfCountSinceTick();
    
    ULARGE_INTEGER liBase;
    DWORD dwCurCount;

	// Make sure CurTicks is the same before and after read of counter to account for
	// possible rollover
    do {
        liBase = CurTicks;
        dwCurCount = PerfCountSinceTick();
    } while  (liBase.LowPart != CurTicks.LowPart) ;  

    lpliPerformanceCount->QuadPart = liBase.QuadPart + dwCurCount;
    
    return TRUE;
}



//------------------------------------------------------------------------------
//
//  OEMQueryPerformanceFrequency
//  
//      The OEMQueryPerformanceFrequency function retrieves the frequency of 
//      the high-resolution performance counter, if one exists. 
//  
//  BOOL OEMQueryPerformanceFrequency(
//  
//      LARGE_INTEGER  *lpliPerformanceFreq     // address of current frequency
//     );   
//  
//  Parameters
//  
//  lpliPerformanceFreq
//  
//      Points to a variable that the function sets, in counts per second, to 
//      the current performance-counter frequency. If the installed hardware 
//      does not support a high-resolution performance counter, this parameter
//      can be to zero. 
//  
//  Return Value
//  
//      If the installed hardware supports a high-resolution performance 
//      counter, the return value is TRUE.
//      If the installed hardware does not support a high-resolution 
//      performance counter, the return value is FALSE.
//  
//  If this function is implemented by the OEM, the pointer pQueryPerformanceFrequency
//  should be initialized as follows:
//  
//  BOOL (*pQueryPerformanceFrequency)(LARGE_INTEGER *lpPerformanceFrequency)=OEMQueryPerformanceFrequency;
//
//------------------------------------------------------------------------------
BOOL 
OEMQueryPerformanceFrequency(
    LARGE_INTEGER *lpliPerformanceFreq
    ) 
{
    extern DWORD PerfCountFreq();
    
    lpliPerformanceFreq->HighPart = 0;
    lpliPerformanceFreq->LowPart  = PerfCountFreq();
    return TRUE;
}

// set pointers to OEM functions
BOOL (*pQueryPerformanceCounter)(LARGE_INTEGER *lpliPerformanceCount)=OEMQueryPerformanceCounter;
BOOL (*pQueryPerformanceFrequency)(LARGE_INTEGER *lpliPerformanceFreq)=OEMQueryPerformanceFrequency;


//
// CPU-specific functions for OEMIdle
//
extern void  CPUEnterIdle(DWORD dwIdleParam);
extern DWORD CPUGetSysTimerCountMax(DWORD dwIdleMSecRequested);
extern void  CPUSetSysTimerCount(DWORD dwIdleMSec);
extern BOOL CPUClearSysTimerIRQ(void);


//
// dougfir or later
//
extern DWORD
CPUGetSysTimerCountElapsed(
    DWORD dwTimerCountdownMSec,
    volatile DWORD *pCurMSec,
    DWORD *pPartialCurMSec,
    volatile ULARGE_INTEGER *pCurTicks
    );

//------------------------------------------------------------------------------
//
//  This routine is called by the kernel when there are no threads ready to
//  run. The CPU should be put into a reduced power 4 and halted. It is 
//  important to be able to resume execution quickly upon receiving an interrupt.
//  Note: It is assumed that interrupts are off when OEMIdle is called.  Interrrupts
//  are turned off when OEMIdle returns.
//
//------------------------------------------------------------------------------
static DWORD dwPartialCurMSec = 0;           // Keep CPU-specific sub-millisecond leftover.
void
OEMIdle(
    DWORD dwIdleParam
    )
{
    DWORD dwIdleMSec;
    DWORD dwPrevMSec = *pCurMSec;

    // Use for 64-bit math
    ULARGE_INTEGER currIdle = {
        curridlelow,
        curridlehigh
    };

    if ((int) (dwIdleMSec = dwReschedTime - dwPrevMSec) <= 0) {
        // already time to wakeup
        return;
    }

    // just idle till tick if profiling or running iltiming
    if (bProfileTimerRunning || fIntrTime) {  // fIntrTime : Interrupt Latency timeing.

        // idle till end of 'tick'

        CPUEnterIdle(dwIdleParam);

        // Update global idle time and return
        currIdle.QuadPart += RESCHED_PERIOD;
        curridlelow = currIdle.LowPart;
        curridlehigh = currIdle.HighPart;
        
        return;
    }

    //
    // Since OEMIdle( ) is being called in the middle of a normal reschedule
    // period, CurMSec, dwPartialCurMSec, and CurTicks need to be updated accordingly.
    // Once we reach this point, we must re-program the timer (if we ever did) 
    // because dwPartialCurMSec will be modified in the next function call.
    //
    CPUGetSysTimerCountElapsed(RESCHED_PERIOD, pCurMSec, &dwPartialCurMSec, pCurTicks);

    if ((int) (dwIdleMSec -= *pCurMSec - dwPrevMSec) > 0) {

        dwPrevMSec = *pCurMSec;

        //
        // The system timer may not be capable of arbitrary timeouts. Get the
        // CPU-specific highest possible timeout available.
        //
        dwIdleMSec = CPUGetSysTimerCountMax(dwIdleMSec);
    
        //
        // Set the timer to wake up much later than usual, if needed.
        //
        CPUSetSysTimerCount(dwIdleMSec);
        CPUClearSysTimerIRQ( );
        
        //
        // Enable wakeup on any interrupt, then go to sleep.
        //
//	    DEBUGMSG(1, (TEXT("OEMIDle  \r\n")));
        CPUEnterIdle(dwIdleParam);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -