⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix.h

📁 一个可进行矩阵计算的模版类,可实现大多数常用的矩阵计算功能
💻 H
📖 第 1 页 / 共 2 页
字号:
   return *this;
}

// combined scalar division and assignment operator
MAT_TEMPLATE inline matrixT&
matrixT::operator /= (const T& c) _NO_THROW
{
    if (_m->Refcnt > 1) clone();
    for (size_t i=0; i < _m->Row; i++)
	for (size_t j=0; j < _m->Col; j++)
	    _m->Val[i][j] /= c;

    return *this;
}

// combined power and assignment operator
MAT_TEMPLATE inline matrixT&
matrixT::operator ^= (const size_t& pow) _THROW_MATRIX_ERROR
{
	matrixT temp(*this);

	for (size_t i=2; i <= pow; i++)
      *this = *this * temp;

	return *this;
}

// unary negation operator
MAT_TEMPLATE inline matrixT
matrixT::operator - () _NO_THROW
{
   matrixT temp(_m->Row,_m->Col);

   for (size_t i=0; i < _m->Row; i++)
      for (size_t j=0; j < _m->Col; j++)
	 temp._m->Val[i][j] = - _m->Val[i][j];

   return temp;
}

// binary addition operator
MAT_TEMPLATE inline matrixT
operator + (const matrixT& m1, const matrixT& m2) _THROW_MATRIX_ERROR
{
   matrixT temp = m1;
   temp += m2;
   return temp;
}

// binary subtraction operator
MAT_TEMPLATE inline matrixT
operator - (const matrixT& m1, const matrixT& m2) _THROW_MATRIX_ERROR
{
   matrixT temp = m1;
   temp -= m2;
   return temp;
}

// binary scalar multiplication operator
MAT_TEMPLATE inline matrixT
operator * (const matrixT& m, const T& no) _NO_THROW
{
   matrixT temp = m;
   temp *= no;
   return temp;
}


// binary scalar multiplication operator
MAT_TEMPLATE inline matrixT
operator * (const T& no, const matrixT& m) _NO_THROW
{
   return (m * no);
}

// binary matrix multiplication operator
MAT_TEMPLATE inline matrixT
operator * (const matrixT& m1, const matrixT& m2) _THROW_MATRIX_ERROR
{
   matrixT temp = m1;
   temp *= m2;
   return temp;
}

// binary scalar division operator
MAT_TEMPLATE inline matrixT
operator / (const matrixT& m, const T& no) _NO_THROW
{
    return (m * (T(1) / no));
}


// binary scalar division operator
MAT_TEMPLATE inline matrixT
operator / (const T& no, const matrixT& m) _THROW_MATRIX_ERROR
{
    return (!m * no);
}

// binary matrix division operator
MAT_TEMPLATE inline matrixT
operator / (const matrixT& m1, const matrixT& m2) _THROW_MATRIX_ERROR
{
    return (m1 * !m2);
}

// binary power operator
MAT_TEMPLATE inline matrixT
operator ^ (const matrixT& m, const size_t& pow) _THROW_MATRIX_ERROR
{
   matrixT temp = m;
   temp ^= pow;
   return temp;
}

// unary transpose operator
MAT_TEMPLATE inline matrixT
operator ~ (const matrixT& m) _NO_THROW
{
   matrixT temp(m.ColNo(),m.RowNo());

   for (size_t i=0; i < m.RowNo(); i++)
      for (size_t j=0; j < m.ColNo(); j++)
      {
         T x = m(i,j);
	      temp(j,i) = x;
      }
   return temp;
}

// unary inversion operator
MAT_TEMPLATE inline matrixT
operator ! (const matrixT m) _THROW_MATRIX_ERROR
{
   matrixT temp = m;
   return temp.Inv();
}

// inversion function
MAT_TEMPLATE inline matrixT
matrixT::Inv () _THROW_MATRIX_ERROR
{
   size_t i,j,k;
   T a1,a2,*rowptr;

   if (_m->Row != _m->Col)
      REPORT_ERROR( "matrixT::operator!: Inversion of a non-square matrix");

   matrixT temp(_m->Row,_m->Col);
   if (_m->Refcnt > 1) clone();


   temp.Unit();
   for (k=0; k < _m->Row; k++)
   {
      int indx = pivot(k);
      if (indx == -1)
	      REPORT_ERROR( "matrixT::operator!: Inversion of a singular matrix");

      if (indx != 0)
      {
	      rowptr = temp._m->Val[k];
	      temp._m->Val[k] = temp._m->Val[indx];
	      temp._m->Val[indx] = rowptr;
      }
      a1 = _m->Val[k][k];
      for (j=0; j < _m->Row; j++)
      {
	      _m->Val[k][j] /= a1;
	      temp._m->Val[k][j] /= a1;
      }
      for (i=0; i < _m->Row; i++)
	   if (i != k)
	   {
	      a2 = _m->Val[i][k];
	      for (j=0; j < _m->Row; j++)
	      {
	         _m->Val[i][j] -= a2 * _m->Val[k][j];
	         temp._m->Val[i][j] -= a2 * temp._m->Val[k][j];
	      }
	   }
   }
   return temp;
}

// solve simultaneous equation
MAT_TEMPLATE inline matrixT
matrixT::Solve (const matrixT& v) const _THROW_MATRIX_ERROR
{
   size_t i,j,k;
   T a1;

   if (!(_m->Row == _m->Col && _m->Col == v._m->Row))
      REPORT_ERROR( "matrixT::Solve():Inconsistent matrices!");

   matrixT temp(_m->Row,_m->Col+v._m->Col);
   for (i=0; i < _m->Row; i++)
   {
      for (j=0; j < _m->Col; j++)
	 temp._m->Val[i][j] = _m->Val[i][j];
      for (k=0; k < v._m->Col; k++)
	 temp._m->Val[i][_m->Col+k] = v._m->Val[i][k];
   }
   for (k=0; k < _m->Row; k++)
   {
      int indx = temp.pivot(k);
      if (indx == -1)
	 REPORT_ERROR( "matrixT::Solve(): Singular matrix!");

      a1 = temp._m->Val[k][k];
      for (j=k; j < temp._m->Col; j++)
	 temp._m->Val[k][j] /= a1;

      for (i=k+1; i < _m->Row; i++)
      {
	 a1 = temp._m->Val[i][k];
	 for (j=k; j < temp._m->Col; j++)
	   temp._m->Val[i][j] -= a1 * temp._m->Val[k][j];
      }
   }
   matrixT s(v._m->Row,v._m->Col);
   for (k=0; k < v._m->Col; k++)
      for (int m=int(_m->Row)-1; m >= 0; m--)
      {
	 s._m->Val[m][k] = temp._m->Val[m][_m->Col+k];
	 for (j=m+1; j < _m->Col; j++)
	    s._m->Val[m][k] -= temp._m->Val[m][j] * s._m->Val[j][k];
      }
   return s;
}

// set zero to all elements of this matrix
MAT_TEMPLATE inline void
matrixT::Null (const size_t& row, const size_t& col) _NO_THROW
{
    if (row != _m->Row || col != _m->Col)
	realloc( row,col);

    if (_m->Refcnt > 1) 
	clone();

    for (size_t i=0; i < _m->Row; i++)
	for (size_t j=0; j < _m->Col; j++)
	    _m->Val[i][j] = T(0);
    return;
}

// set zero to all elements of this matrix
MAT_TEMPLATE inline void
matrixT::Null() _NO_THROW
{
    if (_m->Refcnt > 1) clone();   
    for (size_t i=0; i < _m->Row; i++)
	for (size_t j=0; j < _m->Col; j++)
		_m->Val[i][j] = T(0);
    return;
}

// set this matrix to unity
MAT_TEMPLATE inline void
matrixT::Unit (const size_t& row) _NO_THROW
{
    if (row != _m->Row || row != _m->Col)
	realloc( row, row);
	
    if (_m->Refcnt > 1) 
	clone();

    for (size_t i=0; i < _m->Row; i++)
	for (size_t j=0; j < _m->Col; j++)
	    _m->Val[i][j] = i == j ? T(1) : T(0);
    return;
}

// set this matrix to unity
MAT_TEMPLATE inline void
matrixT::Unit () _NO_THROW
{
    if (_m->Refcnt > 1) clone();   
    size_t row = min(_m->Row,_m->Col);
    _m->Row = _m->Col = row;

    for (size_t i=0; i < _m->Row; i++)
	for (size_t j=0; j < _m->Col; j++)
	    _m->Val[i][j] = i == j ? T(1) : T(0);
    return;
}

// private partial pivoting method
MAT_TEMPLATE inline int
matrixT::pivot (size_t row)
{
  int k = int(row);
  double amax,temp;

  amax = -1;
  for (size_t i=row; i < _m->Row; i++)
    if ( (temp = abs( _m->Val[i][row])) > amax && temp != 0.0)
     {
       amax = temp;
       k = i;
     }
  if (_m->Val[k][row] == T(0))
     return -1;
  if (k != int(row))
  {
     T* rowptr = _m->Val[k];
     _m->Val[k] = _m->Val[row];
     _m->Val[row] = rowptr;
     return k;
  }
  return 0;
}

// calculate the determinant of a matrix
MAT_TEMPLATE inline T
matrixT::Det () const _THROW_MATRIX_ERROR
{
   size_t i,j,k;
   T piv,detVal = T(1);

   if (_m->Row != _m->Col)
      REPORT_ERROR( "matrixT::Det(): Determinant a non-square matrix!");
   
   matrixT temp(*this);
   if (temp._m->Refcnt > 1) temp.clone();

   for (k=0; k < _m->Row; k++)
   {
      int indx = temp.pivot(k);
      if (indx == -1)
	 return 0;
      if (indx != 0)
	 detVal = - detVal;
      detVal = detVal * temp._m->Val[k][k];
      for (i=k+1; i < _m->Row; i++)
      {
	 piv = temp._m->Val[i][k] / temp._m->Val[k][k];
	 for (j=k+1; j < _m->Row; j++)
	    temp._m->Val[i][j] -= piv * temp._m->Val[k][j];
      }
   }
   return detVal;
}

// calculate the norm of a matrix
MAT_TEMPLATE inline T
matrixT::Norm () _NO_THROW
{
   T retVal = T(0);

   for (size_t i=0; i < _m->Row; i++)
      for (size_t j=0; j < _m->Col; j++)
	 retVal += _m->Val[i][j] * _m->Val[i][j];
   retVal = sqrt( retVal);

   return retVal;
}

// calculate the condition number of a matrix
MAT_TEMPLATE inline T
matrixT::Cond () _NO_THROW
{
   matrixT inv = ! (*this);
   return (Norm() * inv.Norm());
}

// calculate the cofactor of a matrix for a given element
MAT_TEMPLATE inline T
matrixT::Cofact (size_t row, size_t col) _THROW_MATRIX_ERROR
{
   size_t i,i1,j,j1;

   if (_m->Row != _m->Col)
      REPORT_ERROR( "matrixT::Cofact(): Cofactor of a non-square matrix!");

   if (row > _m->Row || col > _m->Col)
      REPORT_ERROR( "matrixT::Cofact(): Index out of range!");

   matrixT temp (_m->Row-1,_m->Col-1);

   for (i=i1=0; i < _m->Row; i++)
   {
      if (i == row)
	continue;
      for (j=j1=0; j < _m->Col; j++)
      {
	 if (j == col)
	    continue;
	 temp._m->Val[i1][j1] = _m->Val[i][j];
	 j1++;
      }
      i1++;
   }
   T  cof = temp.Det();
   if ((row+col)%2 == 1)
      cof = -cof;

   return cof;
}


// calculate adjoin of a matrix
MAT_TEMPLATE inline matrixT
matrixT::Adj () _THROW_MATRIX_ERROR
{
   if (_m->Row != _m->Col)
      REPORT_ERROR( "matrixT::Adj(): Adjoin of a non-square matrix.");

   matrixT temp(_m->Row,_m->Col);

   for (size_t i=0; i < _m->Row; i++)
      for (size_t j=0; j < _m->Col; j++)
	  temp._m->Val[j][i] = Cofact(i,j);
   return temp;
}

// Determine if the matrix is singular
MAT_TEMPLATE inline bool
matrixT::IsSingular () _NO_THROW
{
   if (_m->Row != _m->Col)
      return false;
   return (Det() == T(0));
}

// Determine if the matrix is diagonal
MAT_TEMPLATE inline bool
matrixT::IsDiagonal () _NO_THROW
{
   if (_m->Row != _m->Col)
      return false;
   for (size_t i=0; i < _m->Row; i++)
     for (size_t j=0; j < _m->Col; j++)
	if (i != j && _m->Val[i][j] != T(0))
	  return false;
   return true;
}

// Determine if the matrix is scalar
MAT_TEMPLATE inline bool
matrixT::IsScalar () _NO_THROW
{
   if (!IsDiagonal())
     return false;
   T v = _m->Val[0][0];
   for (size_t i=1; i < _m->Row; i++)
     if (_m->Val[i][i] != v)
	return false;
   return true;
}

// Determine if the matrix is a unit matrix
MAT_TEMPLATE inline bool
matrixT::IsUnit () _NO_THROW
{
   if (IsScalar() && _m->Val[0][0] == T(1))
     return true;
   return false;
}

// Determine if this is a null matrix
MAT_TEMPLATE inline bool
matrixT::IsNull () _NO_THROW
{
   for (size_t i=0; i < _m->Row; i++)
      for (size_t j=0; j < _m->Col; j++)
	 if (_m->Val[i][j] != T(0))
	    return false;
   return true;
}

// Determine if the matrix is symmetric
MAT_TEMPLATE inline bool
matrixT::IsSymmetric () _NO_THROW
{
   if (_m->Row != _m->Col)
      return false;
   for (size_t i=0; i < _m->Row; i++)
      for (size_t j=0; j < _m->Col; j++)
	 if (_m->Val[i][j] != _m->Val[j][i])
	    return false;
   return true;
}
	   
// Determine if the matrix is skew-symmetric
MAT_TEMPLATE inline bool
matrixT::IsSkewSymmetric () _NO_THROW
{
   if (_m->Row != _m->Col)
      return false;
   for (size_t i=0; i < _m->Row; i++)
      for (size_t j=0; j < _m->Col; j++)
	 if (_m->Val[i][j] != -_m->Val[j][i])
	    return false;
   return true;
}
   
// Determine if the matrix is upper triangular
MAT_TEMPLATE inline bool
matrixT::IsUpperTriangular () _NO_THROW
{
   if (_m->Row != _m->Col)
      return false;
   for (size_t i=1; i < _m->Row; i++)
      for (size_t j=0; j < i-1; j++)
	 if (_m->Val[i][j] != T(0))
	    return false;
   return true;
}

// Determine if the matrix is lower triangular
MAT_TEMPLATE inline bool
matrixT::IsLowerTriangular () _NO_THROW
{
   if (_m->Row != _m->Col)
      return false;

   for (size_t j=1; j < _m->Col; j++)
      for (size_t i=0; i < j-1; i++)
	 if (_m->Val[i][j] != T(0))
	    return false;

   return true;
}

#ifndef _NO_NAMESPACE
} 
#endif

#endif //__STD_MATRIX_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -