📄 bootstrap.m
字号:
function [x,q] = bootstrap(Ns,R,Q,initVar,numSamples);
% PURPOSE : This m file performs the bootstrap algorithm (a.k.a. SIR,
% particle filter, etc.) for the model specified in the
% file sirdemo1.m.
% INPUTS : - actualx = The true hidden state.
% - y = The observation.
% - R = The measurement noise variance parameter.
% - Q = The process noise variance parameter.
% - initVar = The initial variance of the state estimate.
% - numSamples = The number of samples.
% OUTPUTS : - x = The estimated state samples.
% - q = The normalised importance ratios.
% AUTHOR : Nando de Freitas - Thanks for the acknowledgement :-)
% DATE : 08-09-98
if nargin < 5, error('Not enough input arguments.'); end
rows=Ns; % rows = Max number of time steps.
S = numSamples; % Number of samples;
x=zeros(S,3);
xu=zeros(S,3);
q=zeros(S,1);
% SAMPLE FROM THE PRIOR:
% =====================
x(1,:) = sqrt(initVar)*randn(1,S);
x(2,:) = sqrt(initVar)*randn(1,S);
x(3,:) = sqrt(initVar)*randn(1,S);
% mean(x(:,1));
% cov(x(:,1));
% figure(1)
% clf;
% UPDATE AND PREDICTION STAGES:
% ============================
for t=1:rows-1,
xu = predictstates(x,Q);
q = importanceweights(Xs_fft,id_v,xu);
x = updatestates((xu(1,:),q);
end;
plot(t,mean(x(1:S,t,1)),'ro');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -