📄 sbrhfgen.c
字号:
p02im.r.hi32 = accBuf[3]; /* 64-bit accumulators now have 2*FBITS_OUT_QMFA fraction bits * want to scale them down to integers (32-bit signed, Q0) * with scale factor of 2^n, n >= 0 * leave 1 GB for calculating determinant, so take top 30 non-zero bits */ gbMask = ((p02re.r.hi32) ^ (p02re.r.hi32 >> 31)) | ((p02im.r.hi32) ^ (p02im.r.hi32 >> 31)); if (gbMask == 0) { s = p02re.r.hi32 >> 31; gbMask = (p02re.r.lo32 ^ s) - s; s = p02im.r.hi32 >> 31; gbMask |= (p02im.r.lo32 ^ s) - s; z = 32 + CLZ(gbMask); } else { gbMask = FASTABS(p02re.r.hi32) | FASTABS(p02im.r.hi32); z = CLZ(gbMask); } n = 64 - z; /* number of non-zero bits in bottom of 64-bit word */ if (n <= 30) { loShift = (30 - n); *p02reN = p02re.r.lo32 << loShift; *p02imN = p02im.r.lo32 << loShift; return -(loShift + 2*FBITS_OUT_QMFA); } else if (n < 32 + 30) { loShift = (n - 30); hiShift = 32 - loShift; *p02reN = (p02re.r.hi32 << hiShift) | (p02re.r.lo32 >> loShift); *p02imN = (p02im.r.hi32 << hiShift) | (p02im.r.lo32 >> loShift); return (loShift - 2*FBITS_OUT_QMFA); } else { hiShift = n - (32 + 30); *p02reN = p02re.r.hi32 >> hiShift; *p02imN = p02im.r.hi32 >> hiShift; return (32 - 2*FBITS_OUT_QMFA - hiShift); } return 0;}/************************************************************************************** * Function: CalcLPCoefs * * Description: calculate linear prediction coefficients for one subband (4.6.18.6.2) * * Inputs: buffer of low-freq samples, starting at time index = 0, * freq index = patch subband * number of guard bits in input sample buffer * * Outputs: complex LP coefficients a0re, a0im, a1re, a1im, format = Q29 * * Return: none * * Notes: output coefficients (a0re, a0im, a1re, a1im) clipped to range (-4, 4) * if the comples coefficients have magnitude >= 4.0, they are all * set to 0 (see spec) **************************************************************************************/static void CalcLPCoefs(int *XBuf, int *a0re, int *a0im, int *a1re, int *a1im, int gb){ int zFlag, n1, n2, nd, d, dInv, tre, tim; int p01re, p01im, p02re, p02im, p12re, p12im, p11re, p22re; /* pre-scale to avoid overflow - probably never happens in practice (see QMFA) * max bit growth per accumulator = 38*2 = 76 mul-adds (X * X) * using 64-bit MADD, so if X has n guard bits, X*X has 2n+1 guard bits * gain 1 extra sign bit per multiply, so ensure ceil(log2(76/2) / 2) = 3 guard bits on inputs */ if (gb < 3) { nd = 3 - gb; for (n1 = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) { XBuf[0] >>= nd; XBuf[1] >>= nd; XBuf += (2*64); } XBuf -= (2*64*(NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2)); } /* calculate covariance elements */ n1 = CalcCovariance1(XBuf, &p01re, &p01im, &p12re, &p12im, &p11re, &p22re); n2 = CalcCovariance2(XBuf, &p02re, &p02im); /* normalize everything to larger power of 2 scalefactor, call it n1 */ if (n1 < n2) { nd = MIN(n2 - n1, 31); p01re >>= nd; p01im >>= nd; p12re >>= nd; p12im >>= nd; p11re >>= nd; p22re >>= nd; n1 = n2; } else if (n1 > n2) { nd = MIN(n1 - n2, 31); p02re >>= nd; p02im >>= nd; } /* calculate determinant of covariance matrix (at least 1 GB in pXX) */ d = MULSHIFT32(p12re, p12re) + MULSHIFT32(p12im, p12im); d = MULSHIFT32(d, RELAX_COEF) << 1; d = MULSHIFT32(p11re, p22re) - d; ASSERT(d >= 0); /* should never be < 0 */ zFlag = 0; *a0re = *a0im = 0; *a1re = *a1im = 0; if (d > 0) { /* input = Q31 d = Q(-2*n1 - 32 + nd) = Q31 * 2^(31 + 2*n1 + 32 - nd) * inverse = Q29 dInv = Q29 * 2^(-31 - 2*n1 - 32 + nd) = Q(29 + 31 + 2*n1 + 32 - nd) * * numerator has same Q format as d, since it's sum of normalized squares * so num * inverse = Q(-2*n1 - 32) * Q(29 + 31 + 2*n1 + 32 - nd) * = Q(29 + 31 - nd), drop low 32 in MULSHIFT32 * = Q(29 + 31 - 32 - nd) = Q(28 - nd) */ nd = CLZ(d) - 1; d <<= nd; dInv = InvRNormalized(d); /* 1 GB in pXX */ tre = MULSHIFT32(p01re, p12re) - MULSHIFT32(p01im, p12im) - MULSHIFT32(p02re, p11re); tre = MULSHIFT32(tre, dInv); tim = MULSHIFT32(p01re, p12im) + MULSHIFT32(p01im, p12re) - MULSHIFT32(p02im, p11re); tim = MULSHIFT32(tim, dInv); /* if d is extremely small, just set coefs to 0 (would have poor precision anyway) */ if (nd > 28 || (FASTABS(tre) >> (28 - nd)) >= 4 || (FASTABS(tim) >> (28 - nd)) >= 4) { zFlag = 1; } else { *a1re = tre << (FBITS_LPCOEFS - 28 + nd); /* i.e. convert Q(28 - nd) to Q(29) */ *a1im = tim << (FBITS_LPCOEFS - 28 + nd); } } if (p11re) { /* input = Q31 p11re = Q(-n1 + nd) = Q31 * 2^(31 + n1 - nd) * inverse = Q29 dInv = Q29 * 2^(-31 - n1 + nd) = Q(29 + 31 + n1 - nd) * * numerator is Q(-n1 - 3) * so num * inverse = Q(-n1 - 3) * Q(29 + 31 + n1 - nd) * = Q(29 + 31 - 3 - nd), drop low 32 in MULSHIFT32 * = Q(29 + 31 - 3 - 32 - nd) = Q(25 - nd) */ nd = CLZ(p11re) - 1; /* assume positive */ p11re <<= nd; dInv = InvRNormalized(p11re); /* a1re, a1im = Q29, so scaled by (n1 + 3) */ tre = (p01re >> 3) + MULSHIFT32(p12re, *a1re) + MULSHIFT32(p12im, *a1im); tre = -MULSHIFT32(tre, dInv); tim = (p01im >> 3) - MULSHIFT32(p12im, *a1re) + MULSHIFT32(p12re, *a1im); tim = -MULSHIFT32(tim, dInv); if (nd > 25 || (FASTABS(tre) >> (25 - nd)) >= 4 || (FASTABS(tim) >> (25 - nd)) >= 4) { zFlag = 1; } else { *a0re = tre << (FBITS_LPCOEFS - 25 + nd); /* i.e. convert Q(25 - nd) to Q(29) */ *a0im = tim << (FBITS_LPCOEFS - 25 + nd); } } /* see 4.6.18.6.2 - if magnitude of a0 or a1 >= 4 then a0 = a1 = 0 * i.e. a0re < 4, a0im < 4, a1re < 4, a1im < 4 * Q29*Q29 = Q26 */ if (zFlag || MULSHIFT32(*a0re, *a0re) + MULSHIFT32(*a0im, *a0im) >= MAG_16 || MULSHIFT32(*a1re, *a1re) + MULSHIFT32(*a1im, *a1im) >= MAG_16) { *a0re = *a0im = 0; *a1re = *a1im = 0; } /* no need to clip - we never changed the XBuf data, just used it to calculate a0 and a1 */ if (gb < 3) { nd = 3 - gb; for (n1 = (NUM_TIME_SLOTS*SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) { XBuf[0] <<= nd; XBuf[1] <<= nd; XBuf += (2*64); } }}/************************************************************************************** * Function: GenerateHighFreq * * Description: generate high frequencies with SBR (4.6.18.6) * * Inputs: initialized PSInfoSBR struct * initialized SBRGrid struct for this channel * initialized SBRFreq struct for this SCE/CPE block * initialized SBRChan struct for this channel * index of current channel (0 for SCE, 0 or 1 for CPE) * * Outputs: new high frequency samples starting at frequency kStart * * Return: none **************************************************************************************/void GenerateHighFreq(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch){ int band, newBW, c, t, gb, gbMask, gbIdx; int currPatch, p, x, k, g, i, iStart, iEnd, bw, bwsq; int a0re, a0im, a1re, a1im; int x1re, x1im, x2re, x2im; int ACCre, ACCim; int *XBufLo, *XBufHi; /* calculate array of chirp factors */ for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) { c = sbrChan->chirpFact[band]; /* previous (bwArray') */ newBW = newBWTab[sbrChan->invfMode[0][band]][sbrChan->invfMode[1][band]]; /* weighted average of new and old (can't overflow - total gain = 1.0) */ if (newBW < c) t = MULSHIFT32(newBW, 0x60000000) + MULSHIFT32(0x20000000, c); /* new is smaller: 0.75*new + 0.25*old */ else t = MULSHIFT32(newBW, 0x74000000) + MULSHIFT32(0x0c000000, c); /* new is larger: 0.90625*new + 0.09375*old */ t <<= 1; if (t < 0x02000000) /* below 0.015625, clip to 0 */ t = 0; if (t > 0x7f800000) /* clip to 0.99609375 */ t = 0x7f800000; /* save curr as prev for next time */ sbrChan->chirpFact[band] = t; sbrChan->invfMode[0][band] = sbrChan->invfMode[1][band]; } iStart = sbrGrid->envTimeBorder[0] + HF_ADJ; iEnd = sbrGrid->envTimeBorder[sbrGrid->numEnv] + HF_ADJ; /* generate new high freqs from low freqs, patches, and chirp factors */ k = sbrFreq->kStart; g = 0; bw = sbrChan->chirpFact[g]; bwsq = MULSHIFT32(bw, bw) << 1; gbMask = (sbrChan->gbMask[0] | sbrChan->gbMask[1]); /* older 32 | newer 8 */ gb = CLZ(gbMask) - 1; for (currPatch = 0; currPatch < sbrFreq->numPatches; currPatch++) { for (x = 0; x < sbrFreq->patchNumSubbands[currPatch]; x++) { /* map k to corresponding noise floor band */ if (k >= sbrFreq->freqNoise[g+1]) { g++; bw = sbrChan->chirpFact[g]; /* Q31 */ bwsq = MULSHIFT32(bw, bw) << 1; /* Q31 */ } p = sbrFreq->patchStartSubband[currPatch] + x; /* low QMF band */ XBufHi = psi->XBuf[iStart][k]; if (bw) { CalcLPCoefs(psi->XBuf[0][p], &a0re, &a0im, &a1re, &a1im, gb); a0re = MULSHIFT32(bw, a0re); /* Q31 * Q29 = Q28 */ a0im = MULSHIFT32(bw, a0im); a1re = MULSHIFT32(bwsq, a1re); a1im = MULSHIFT32(bwsq, a1im); XBufLo = psi->XBuf[iStart-2][p]; x2re = XBufLo[0]; /* RE{XBuf[n-2]} */ x2im = XBufLo[1]; /* IM{XBuf[n-2]} */ XBufLo += (64*2); x1re = XBufLo[0]; /* RE{XBuf[n-1]} */ x1im = XBufLo[1]; /* IM{XBuf[n-1]} */ XBufLo += (64*2); for (i = iStart; i < iEnd; i++) { /* a0re/im, a1re/im are Q28 with at least 1 GB, * so the summing for AACre/im is fine (1 GB in, plus 1 from MULSHIFT32) */ ACCre = MULSHIFT32(x2re, a1re) - MULSHIFT32(x2im, a1im); ACCim = MULSHIFT32(x2re, a1im) + MULSHIFT32(x2im, a1re); x2re = x1re; x2im = x1im; ACCre += MULSHIFT32(x1re, a0re) - MULSHIFT32(x1im, a0im); ACCim += MULSHIFT32(x1re, a0im) + MULSHIFT32(x1im, a0re); x1re = XBufLo[0]; /* RE{XBuf[n]} */ x1im = XBufLo[1]; /* IM{XBuf[n]} */ XBufLo += (64*2); /* lost 4 fbits when scaling by a0re/im, a1re/im (Q28) */ CLIP_2N_SHIFT30(ACCre, 4); ACCre += x1re; CLIP_2N_SHIFT30(ACCim, 4); ACCim += x1im; XBufHi[0] = ACCre; XBufHi[1] = ACCim; XBufHi += (64*2); /* update guard bit masks */ gbMask = FASTABS(ACCre); gbMask |= FASTABS(ACCim); gbIdx = (i >> 5) & 0x01; /* 0 if i < 32, 1 if i >= 32 */ sbrChan->gbMask[gbIdx] |= gbMask; } } else { XBufLo = (int *)psi->XBuf[iStart][p]; for (i = iStart; i < iEnd; i++) { XBufHi[0] = XBufLo[0]; XBufHi[1] = XBufLo[1]; XBufLo += (64*2); XBufHi += (64*2); } } k++; /* high QMF band */ } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -