📄 sbrhuff.c
字号:
/* ***** BEGIN LICENSE BLOCK ***** * Source last modified: $Id: sbrhuff.c,v 1.1.2.1 2005/02/26 02:05:12 jrecker Exp $ * * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved. * * The contents of this file, and the files included with this file, * are subject to the current version of the RealNetworks Public * Source License (the "RPSL") available at * http://www.helixcommunity.org/content/rpsl unless you have licensed * the file under the current version of the RealNetworks Community * Source License (the "RCSL") available at * http://www.helixcommunity.org/content/rcsl, in which case the RCSL * will apply. You may also obtain the license terms directly from * RealNetworks. You may not use this file except in compliance with * the RPSL or, if you have a valid RCSL with RealNetworks applicable * to this file, the RCSL. Please see the applicable RPSL or RCSL for * the rights, obligations and limitations governing use of the * contents of the file. * * This file is part of the Helix DNA Technology. RealNetworks is the * developer of the Original Code and owns the copyrights in the * portions it created. * * This file, and the files included with this file, is distributed * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET * ENJOYMENT OR NON-INFRINGEMENT. * * Technology Compatibility Kit Test Suite(s) Location: * http://www.helixcommunity.org/content/tck * * Contributor(s): * * ***** END LICENSE BLOCK ***** */ /************************************************************************************** * Fixed-point HE-AAC decoder * Jon Recker (jrecker@real.com) * February 2005 * * sbrhuff.c - functions for unpacking Huffman-coded envelope and noise data **************************************************************************************/#include "sbr.h"#include "assembly.h"/************************************************************************************** * Function: DecodeHuffmanScalar * * Description: decode one Huffman symbol from bitstream * * Inputs: pointers to Huffman table and info struct * left-aligned bit buffer with >= huffTabInfo->maxBits bits * * Outputs: decoded symbol in *val * * Return: number of bits in symbol * * Notes: assumes canonical Huffman codes: * first CW always 0, we have "count" CW's of length "nBits" bits * starting CW for codes of length nBits+1 = * (startCW[nBits] + count[nBits]) << 1 * if there are no codes at nBits, then we just keep << 1 each time * (since count[nBits] = 0) **************************************************************************************/static int DecodeHuffmanScalar(const signed short *huffTab, const HuffInfo *huffTabInfo, unsigned int bitBuf, signed int *val){ unsigned int count, start, shift, t; const unsigned char *countPtr; const signed short *map; map = huffTab + huffTabInfo->offset; countPtr = huffTabInfo->count; start = 0; count = 0; shift = 32; do { start += count; start <<= 1; map += count; count = *countPtr++; shift--; t = (bitBuf >> shift) - start; } while (t >= count); *val = (signed int)map[t]; return (countPtr - huffTabInfo->count);}/************************************************************************************** * Function: DecodeOneSymbol * * Description: dequantize one Huffman symbol from bitstream, * using table huffTabSBR[huffTabIndex] * * Inputs: BitStreamInfo struct pointing to start of next Huffman codeword * index of Huffman table * * Outputs: bitstream advanced by number of bits in codeword * * Return: one decoded symbol **************************************************************************************/static int DecodeOneSymbol(BitStreamInfo *bsi, int huffTabIndex){ int nBits, val; unsigned int bitBuf; const HuffInfo *hi; hi = &(huffTabSBRInfo[huffTabIndex]); bitBuf = GetBitsNoAdvance(bsi, hi->maxBits) << (32 - hi->maxBits); nBits = DecodeHuffmanScalar(huffTabSBR, hi, bitBuf, &val); AdvanceBitstream(bsi, nBits); return val;}/* [1.0, sqrt(2)], format = Q29 (one guard bit for decoupling) */static const int envDQTab[2] = {0x20000000, 0x2d413ccc};/************************************************************************************** * Function: DequantizeEnvelope * * Description: dequantize envelope scalefactors * * Inputs: number of scalefactors to process * amplitude resolution flag for this frame (0 or 1) * quantized envelope scalefactors * * Outputs: dequantized envelope scalefactors * * Return: extra int bits in output (6 + expMax) * in other words, output format = Q(FBITS_OUT_DQ_ENV - (6 + expMax)) * * Notes: dequantized scalefactors have at least 2 GB **************************************************************************************/static int DequantizeEnvelope(int nBands, int ampRes, signed char *envQuant, int *envDequant){ int exp, expMax, i, scalei; if (nBands <= 0) return 0; /* scan for largest dequant value (do separately from envelope decoding to keep code cleaner) */ expMax = 0; for (i = 0; i < nBands; i++) { if (envQuant[i] > expMax) expMax = envQuant[i]; } /* dequantized envelope gains * envDequant = 64*2^(envQuant / alpha) = 2^(6 + envQuant / alpha) * if ampRes == 0, alpha = 2 and range of envQuant = [0, 127] * if ampRes == 1, alpha = 1 and range of envQuant = [0, 63] * also if coupling is on, envDequant is scaled by something in range [0, 2] * so range of envDequant = [2^6, 2^69] (no coupling), [2^6, 2^70] (with coupling) * * typical range (from observation) of envQuant/alpha = [0, 27] --> largest envQuant ~= 2^33 * output: Q(29 - (6 + expMax)) * * reference: 14496-3:2001(E)/4.6.18.3.5 and 14496-4:200X/FPDAM8/5.6.5.1.2.1.5 */ if (ampRes) { do { exp = *envQuant++; scalei = MIN(expMax - exp, 31); *envDequant++ = envDQTab[0] >> scalei; } while (--nBands); return (6 + expMax); } else { expMax >>= 1; do { exp = *envQuant++; scalei = MIN(expMax - (exp >> 1), 31); *envDequant++ = envDQTab[exp & 0x01] >> scalei; } while (--nBands); return (6 + expMax); }}/************************************************************************************** * Function: DequantizeNoise * * Description: dequantize noise scalefactors * * Inputs: number of scalefactors to process * quantized noise scalefactors * * Outputs: dequantized noise scalefactors, format = Q(FBITS_OUT_DQ_NOISE) * * Return: none * * Notes: dequantized scalefactors have at least 2 GB **************************************************************************************/static void DequantizeNoise(int nBands, signed char *noiseQuant, int *noiseDequant){ int exp, scalei; if (nBands <= 0) return; /* dequantize noise floor gains (4.6.18.3.5): * noiseDequant = 2^(NOISE_FLOOR_OFFSET - noiseQuant) * * range of noiseQuant = [0, 30] (see 4.6.18.3.6), NOISE_FLOOR_OFFSET = 6 * so range of noiseDequant = [2^-24, 2^6] */ do { exp = *noiseQuant++; scalei = NOISE_FLOOR_OFFSET - exp + FBITS_OUT_DQ_NOISE; /* 6 + 24 - exp, exp = [0,30] */ if (scalei < 0) *noiseDequant++ = 0; else if (scalei < 30) *noiseDequant++ = 1 << scalei; else *noiseDequant++ = 0x3fffffff; /* leave 2 GB */ } while (--nBands);}/************************************************************************************** * Function: DecodeSBREnvelope * * Description: decode delta Huffman coded envelope scalefactors from bitstream * * Inputs: BitStreamInfo struct pointing to start of env data * initialized PSInfoSBR struct * initialized SBRGrid struct for this channel * initialized SBRFreq struct for this SCE/CPE block * initialized SBRChan struct for this channel * index of current channel (0 for SCE, 0 or 1 for CPE) *
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -