📄 methodvalidationchain.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.AttributeVector;import edu.udo.cs.yale.operator.learner.Model;import edu.udo.cs.yale.operator.performance.*;import edu.udo.cs.yale.tools.ParameterService;/** This operator evaluates the performance of algorithms, e.g. feature selection algorithms. The first * inner operator is the algorithm to be evaluated itself. It must return an example set which is in turn * used to create a new model using the second inner operator and retrieve a performance vector using * the third inner operator. This performance vector serves as a performance indicator for the actual algorithm. * * @author ingo * @version $Id: MethodValidationChain.java,v 2.4 2003/07/03 16:01:30 fischer Exp $ */public abstract class MethodValidationChain extends OperatorChain { private static final Class[] OUTPUT_CLASSES = { PerformanceVector.class, AttributeVector.class }; private static final Class[] INPUT_CLASSES = { ExampleSet.class }; private PerformanceCriterion lastPerformance; private IOContainer learnResult; private IOContainer methodResult; public MethodValidationChain() { addValue(new Value("performance", "The last performance (main criterion).") { public double getValue() { if (lastPerformance != null) return lastPerformance.getValue(); else return Double.NaN; } }); addValue(new Value("variance", "The variance of the last performance (main criterion).") { public double getValue() { if (lastPerformance != null) return lastPerformance.getVariance(); else return Double.NaN; } }); } /** Returns the maximum number of innner operators. */ public int getMaxNumberOfInnerOperators() { return 3; } /** Returns the minimum number of innner operators. */ public int getMinNumberOfInnerOperators() { return 3; } public Class[] getOutputClasses() { return OUTPUT_CLASSES; } public Class[] getInputClasses() { return INPUT_CLASSES; } /** Ok if the first inner operator returns a example set, the second returns model and the third a performance vector. */ public Class[] checkIO(Class[] input) throws IllegalInputException { Operator method = getMethod(); Operator learner = getLearner(); Operator evaluator = getEvaluator(); //input = method.getIODescription().getOutputClasses(input); input = method.checkIO(input); if (!IODescription.containsClass(ExampleSet.class, input)) throw new IllegalInputException(getName() + ": " + learner.getName() + " doesn't provide example set", this); //input = learner.getIODescription().getOutputClasses(input); input = learner.checkIO(input); if (!IODescription.containsClass(Model.class, input)) throw new IllegalInputException(getName() + ": " + learner.getName() + " doesn't provide model", this); // GUT? Class[] newInput = new Class[input.length+1]; for (int i = 0; i < input.length; i++) { newInput[i] = input[i]; } newInput[newInput.length-1] = ExampleSet.class; input = evaluator.checkIO(newInput); // ??? //input = evaluator.getIODescription().getOutputClasses(input); if (!IODescription.containsClass(PerformanceVector.class, input)) throw new IllegalInputException(getName() + ": " + evaluator.getName() + " doesn't provide performance vector", this); return new Class[] { PerformanceVector.class, AttributeVector.class }; } private Operator getMethod() { return getOperator(0); } private Operator getLearner() { return getOperator(1); } private Operator getEvaluator() { return getOperator(2); } /** Can be used by subclasses to set the performance of the example set. */ void setResult(PerformanceCriterion pc) { lastPerformance = pc; } /** Applies the method. */ IOContainer useMethod(ExampleSet methodTrainingSet) throws OperatorException { return methodResult = getMethod().apply(getInput().append(new IOObject[] { methodTrainingSet })); } /** Applies the learner. */ IOContainer learn(ExampleSet trainingSet) throws OperatorException { if (methodResult == null) { throw new RuntimeException("Wrong use of MethodEvaluator.evaluate(ExampleSet): No preceding invocation of useMethod(ExampleSet)!"); } learnResult = getLearner().apply(getInput().append(new IOObject[] { trainingSet })); methodResult = null; return learnResult; } /** Applies the applier and evaluator. */ IOContainer evaluate(ExampleSet testSet) throws OperatorException { if (learnResult == null) { throw new RuntimeException("Wrong use of ValidationChain.evaluate(ExampleSet): No preceding invocation of learn(ExampleSet)!"); } IOContainer result = getEvaluator().apply(learnResult.append(new IOObject[] { testSet })); learnResult = null; return result; } void setLastPerformance(PerformanceCriterion pc) { lastPerformance = pc; } public abstract int getNumberOfValidationSteps(); public int getNumberOfSteps() { return getNumberOfValidationSteps() * super.getNumberOfChildrensSteps(); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -