📄 methodxvalidation.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.SplittedExampleSet;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.AttributeVector;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.operator.performance.*;import edu.udo.cs.yale.tools.*;import java.util.List;import java.util.Iterator;/** This operator evaluates the performance of algorithms, e.g. feature selection algorithms. The first * inner operator is the algorithm to be evaluated itself. It must return an example set which is in turn * used to create a new model using the second inner operator and retrieve a performance vector using * the third inner operator. This performance vector serves as a performance indicator for the actual algorithm. * This implementation of a MethodValidationChain that works similar to the {@link XValidation}. * * @yale.xmlclass MethodXValidation * @see edu.udo.cs.yale.operator.XValidation * @author ingo * @version 08.06.2001 */public class MethodXValidation extends MethodValidationChain { /** Total number of iterations. */ private int number; /** Current iteration. */ private int iteration; private AttributeVector attributeVector; public MethodXValidation() { addValue(new Value("iteration", "The number of the current iteration.") { public double getValue() { return iteration; } }); } public int getNumberOfValidationSteps() { return number; } public IOObject[] apply() throws OperatorException { ExampleSet eSet = (ExampleSet)getInput(ExampleSet.class); if (getParameterAsBoolean("leave_one_out")) { number = eSet.getSize(); } else { number = getParameterAsInt("number_of_validations"); } SplittedExampleSet inputSet = new SplittedExampleSet(eSet, number); LogService.logMessage(getName() + ": Starting "+number+"-fold method cross validation", LogService.TASK); attributeVector = new AttributeVector(); PerformanceVector performanceVector = null; for (iteration = 0; iteration < number; iteration++) { // training inputSet.selectAllSubsetsBut(iteration); // apply method ExampleSet methodExampleSet = (ExampleSet)useMethod(inputSet).getInput(ExampleSet.class); ResultService.logResult(getName() + ": Best method result of iteration '" + iteration + "':"); ResultService.logResult(methodExampleSet); countAttributes(methodExampleSet); SplittedExampleSet newInputSet = (SplittedExampleSet)inputSet.clone(); newInputSet.setAttributes(methodExampleSet); learn(newInputSet); // testing newInputSet.selectSingleSubset(iteration); IOContainer evalOutput = evaluate(newInputSet); // retrieve performance PerformanceVector iterationPerformance = (PerformanceVector)evalOutput.getInput(PerformanceVector.class); if (performanceVector == null) { performanceVector = iterationPerformance; } else { for (int i = 0; i < performanceVector.size(); i++) { performanceVector.get(i).buildAverage(iterationPerformance.get(i)); } } setLastPerformance(iterationPerformance.getMainCriterion()); inApplyLoop(); } // end of cross validation IOObject[] outputArray = new IOObject[2]; setResult(performanceVector.getMainCriterion()); return new IOObject[] { performanceVector, attributeVector}; } private void countAttributes(ExampleSet es) { for (int i = 0; i < es.getNumberOfAttributes(); i++) { attributeVector.countAttribute(es.getAttribute(i)); } } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeInt("number_of_validations", "Number of subsets for the crossvalidation.", 2, Integer.MAX_VALUE, 10)); types.add(new ParameterTypeBoolean("leave_one_out", "Set the number of validations to the number of examples. If set to true, number_of_validations is ignored.", false)); return types; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -