⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 methodxvalidation.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.SplittedExampleSet;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.AttributeVector;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.operator.performance.*;import edu.udo.cs.yale.tools.*;import java.util.List;import java.util.Iterator;/** This operator evaluates the performance of algorithms, e.g. feature selection algorithms. The first *  inner operator is the algorithm to be evaluated itself. It must return an example set which is in turn *  used to create a new model using the second inner operator and retrieve a performance vector using *  the third inner operator. This performance vector serves as a performance indicator for the actual algorithm. *  This implementation of a MethodValidationChain that works similar to the {@link XValidation}. * *  @yale.xmlclass MethodXValidation *  @see edu.udo.cs.yale.operator.XValidation *  @author ingo *  @version 08.06.2001  */public class MethodXValidation extends MethodValidationChain {    /** Total number of iterations. */        private int number;    /** Current iteration. */        private int iteration;    private AttributeVector attributeVector;    public MethodXValidation() {	addValue(new Value("iteration", "The number of the current iteration.") {		public double getValue() {		    return iteration;		}	    });    }    public int getNumberOfValidationSteps() {	return number;    }    public IOObject[] apply() throws OperatorException {	ExampleSet eSet = (ExampleSet)getInput(ExampleSet.class);	if (getParameterAsBoolean("leave_one_out")) {	    number = eSet.getSize();	} else {	    number = getParameterAsInt("number_of_validations");	}	SplittedExampleSet inputSet = new SplittedExampleSet(eSet, number);	LogService.logMessage(getName() + ": Starting "+number+"-fold method cross validation", LogService.TASK);		attributeVector = new AttributeVector();	PerformanceVector performanceVector = null;	for (iteration = 0; iteration < number; iteration++) {	    // training	    inputSet.selectAllSubsetsBut(iteration);	    // apply method	    ExampleSet methodExampleSet = (ExampleSet)useMethod(inputSet).getInput(ExampleSet.class);	    ResultService.logResult(getName() + ": Best method result of iteration '" + iteration + "':");	    ResultService.logResult(methodExampleSet);	    countAttributes(methodExampleSet);	    SplittedExampleSet newInputSet = (SplittedExampleSet)inputSet.clone();	    newInputSet.setAttributes(methodExampleSet);	    learn(newInputSet);	    // testing	    newInputSet.selectSingleSubset(iteration);	    IOContainer evalOutput = evaluate(newInputSet);	    // retrieve performance	    PerformanceVector iterationPerformance = (PerformanceVector)evalOutput.getInput(PerformanceVector.class);  	    	    if (performanceVector == null) {		performanceVector = iterationPerformance;	    } else {		for (int i = 0; i  < performanceVector.size(); i++) {		    performanceVector.get(i).buildAverage(iterationPerformance.get(i));		}	    }	    setLastPerformance(iterationPerformance.getMainCriterion());	    inApplyLoop();	}	// end of cross validation	IOObject[] outputArray = new IOObject[2];	setResult(performanceVector.getMainCriterion());		return new IOObject[] { performanceVector, attributeVector};    }    private void countAttributes(ExampleSet es) {	for (int i = 0; i < es.getNumberOfAttributes(); i++) {	    attributeVector.countAttribute(es.getAttribute(i));	}    }    public List getParameterTypes() {	List types = super.getParameterTypes();	types.add(new ParameterTypeInt("number_of_validations", "Number of subsets for the crossvalidation.", 2, Integer.MAX_VALUE, 10));	types.add(new ParameterTypeBoolean("leave_one_out", "Set the number of validations to the number of examples. If set to true, number_of_validations is ignored.", false));	return types;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -