⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 classificationcriteriontest.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.performance.test;import edu.udo.cs.yale.operator.performance.*;import edu.udo.cs.yale.example.test.*;import edu.udo.cs.yale.example.*;import edu.udo.cs.yale.tools.att.*;import java.util.*;/** Tests classification criteria. * *  @version $Id: ClassificationCriterionTest.java,v 1.4 2003/07/24 09:52:53 fischer Exp $ */public class ClassificationCriterionTest extends CriterionTestCase {    public void testClassificationError() throws Exception {	Attribute label     = ExampleTestTools.attributeYesNo();	label.setIndex(0); 	List attributeList = new LinkedList();	attributeList.add(label);	MemoryExampleTable exampleTable	    = new MemoryExampleTable(attributeList, 				     ExampleTestTools.createDataRowReader(new DataRowFactory(DataRowFactory.TYPE_DOUBLE_ARRAY),									  new Attribute[] {label},									  new String[][] { {"yes"},											   {"no"},											   {"yes"},											   {"no"},											   {"yes"},											   {"no"},											   {"yes"},											   {"yes"},											   {"yes"},											   {"no"},											   {"no"},											   {"yes"}}											   ));	AttributeSet attributeSet = new AttributeSet();	attributeSet.setSpecialAttribute("label", label);	ExampleSet eSet = exampleTable.createExampleSet(attributeSet);	eSet.createPredictedLabel();	ExampleReader r = eSet.getExampleReader();	Example e;	e = r.next(); e.setPredictedLabel("yes"); // yy	e = r.next(); e.setPredictedLabel("no");  // nn	e = r.next(); e.setPredictedLabel("no");  // yn	e = r.next(); e.setPredictedLabel("yes"); // ny	e = r.next(); e.setPredictedLabel("yes"); // yy	e = r.next(); e.setPredictedLabel("no");  // nn	e = r.next(); e.setPredictedLabel("yes"); // yy	e = r.next(); e.setPredictedLabel("no");  // yn	e = r.next(); e.setPredictedLabel("no");  // yn	e = r.next(); e.setPredictedLabel("no");  // nn	e = r.next(); e.setPredictedLabel("yes"); // ny	e = r.next(); e.setPredictedLabel("yes"); // yy	// 4x yy	// 3x nn	// 3x yn	// 2x ny	PerformanceVector pv = new PerformanceVector();	for (int i = 0; i < UniversalClassificationCriterion.NAME.length; i++)	    pv.addCriterion(new UniversalClassificationCriterion(i));	PerformanceEvaluator.evaluate(null, eSet, pv, false);	assertEquals("accuracy", 7.0 / 12.0, pv.get(UniversalClassificationCriterion.ACCURACY).getValue(), 0.00000001);	assertEquals("classification_error", 5.0 / 12.0, pv.get(UniversalClassificationCriterion.CLASS_ERROR).getValue(), 0.00000001);	assertEquals("precision", 4.0 /  6.0, pv.get(UniversalClassificationCriterion.PRECISION).getValue(), 0.00000001);	assertEquals("recall", 4.0 /  7.0, pv.get(UniversalClassificationCriterion.RECALL).getValue(), 0.00000001);	assertEquals("fallout", 3.0 /  5.0, pv.get(UniversalClassificationCriterion.FALLOUT).getValue(), 0.00000001);	assertEquals("true_pos", 4, pv.get(UniversalClassificationCriterion.TRUE_POSITIVE).getValue(), 0.00000001);	assertEquals("true_neg", 3, pv.get(UniversalClassificationCriterion.TRUE_NEGATIVE).getValue(), 0.00000001);	assertEquals("false_pos", 2, pv.get(UniversalClassificationCriterion.FALSE_POSITIVE).getValue(), 0.00000001);	assertEquals("false_neg", 3, pv.get(UniversalClassificationCriterion.FALSE_NEGATIVE).getValue(), 0.00000001);    }    public void testUCCClone() {	int counter[][] = {{3, 5},{4, 6}};	cloneTest("", new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_POSITIVE, counter));	cloneTest("", new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_NEGATIVE, counter));	cloneTest("", new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_POSITIVE, counter));	cloneTest("", new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_NEGATIVE, counter));    }    public void testUCCAverage() {	int counter1[][] = {{3, 5}, {4, 6}};	int counter2[][] = {{5, 8}, {2, 9}};	int sum[][]      = {{8, 13},{6, 15}};	UniversalClassificationCriterion[] ucc1 = new UniversalClassificationCriterion[4];	ucc1[0] = new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_POSITIVE, counter1);	ucc1[1] = new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_NEGATIVE, counter1);	ucc1[2] = new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_POSITIVE, counter1);	ucc1[3] = new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_NEGATIVE, counter1);	UniversalClassificationCriterion[] ucc2 = new UniversalClassificationCriterion[4];	ucc2[0] = new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_POSITIVE, counter2);	ucc2[1] = new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_NEGATIVE, counter2);	ucc2[2] = new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_POSITIVE, counter2);	ucc2[3] = new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_NEGATIVE, counter2);		UniversalClassificationCriterion[] avg = new UniversalClassificationCriterion[4];	avg[0] = new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_POSITIVE, sum);	avg[1] = new UniversalClassificationCriterion(UniversalClassificationCriterion.TRUE_NEGATIVE, sum);	avg[2] = new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_POSITIVE, sum);	avg[3] = new UniversalClassificationCriterion(UniversalClassificationCriterion.FALSE_NEGATIVE, sum);	for (int i = 0; i < ucc1.length; i++) {	    ucc1[i].buildAverage(ucc2[i]);	    assertEquals(ucc1[i].getName(), avg[i].getValue(), ucc1[i].getValue(), 0.0000001);	}    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -