⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 confusionmatrix.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.performance;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.Example;/** A confusion matrix. *  @version $Id: ConfusionMatrix.java,v 2.3 2003/04/15 19:49:47 fischer Exp $ */public class ConfusionMatrix extends MeasuredPerformance {        private double threshold;    private double thresholdLabel;    private double[][] costMatrix;    private double totalCost;    private int exampleCount;    /** If the (predicted) label exceeds the threshold is considered to be positive, otherwise negative.     *  If the classification is correct, the profit is increased by pp or nn, if the label is positive     *  and the predicted label is negative, the profit is increased by pn. In the opposite case the profit     *  is increased by np. */    public ConfusionMatrix(double threshold, double thresholdLabel, double pp, double pn, double np, double nn) {	this.threshold = threshold;	this.thresholdLabel = thresholdLabel;		this.costMatrix = new double[2][2];	this.costMatrix[0][0] = pp;	this.costMatrix[0][1] = pn;	this.costMatrix[1][0] = np;	this.costMatrix[1][1] = nn;    }    public String getName() {	return "data mining performance";    }    private ConfusionMatrix(ConfusionMatrix c) {	this.threshold = c.threshold;	this.thresholdLabel = c.thresholdLabel;	this.costMatrix = new double[2][2];	this.costMatrix[0][0] = c.costMatrix[0][0];	this.costMatrix[0][1] = c.costMatrix[0][1];	this.costMatrix[1][0] = c.costMatrix[1][0];	this.costMatrix[1][1] = c.costMatrix[1][1];    }    public void startCounting(ExampleSet set) { 	super.startCounting(set);	totalCost = 0.0;    }    public double getFitness() {	return getValue();    }    public double getValue() {	return totalCost / exampleCount;    }    public double getVariance() {	return Double.NaN;    }    public void countExample(Example e) {	int l = e.getLabel() >= thresholdLabel ? 0 : 1;	int p = e.getPredictedLabel() >= threshold ? 0 : 1;	totalCost += costMatrix[l][p];	exampleCount++;    }    public int compareTo(Object o) {	double dif = ((ConfusionMatrix)o).getValue() - getValue();	if (dif < 0) return 1;	if (dif > 0) return -1;	return 0;    }    public Object clone() {	return new ConfusionMatrix(this);    }    public double getThreshold() { return threshold; }    public String toString() {	return super.toString() + " (threshold="+threshold+")";    }    public void buildAverage(PerformanceCriterion performance) {	super.buildAverage(performance);	ConfusionMatrix other = (ConfusionMatrix)performance;	this.totalCost    += other.totalCost;	this.exampleCount += other.exampleCount;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -