📄 randomsplitmethodvalidationchain.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.SplittedExampleSet;import edu.udo.cs.yale.operator.learner.Model;import edu.udo.cs.yale.operator.performance.PerformanceVector;import edu.udo.cs.yale.operator.performance.PerformanceCriterion;import java.util.List;/** This operator evaluates the performance of algorithms, e.g. feature selection algorithms. The first * inner operator is the algorithm to be evaluated itself. It must return an example set which is in turn * used to create a new model using the second inner operator and retrieve a performance vector using * the third inner operator. This performance vector serves as a performance indicator for the actual algorithm. * * This implementation the example as described for the {@link RandomSplitValidationChain}. * * @yale.xmlclass RandomSplitMethodValidationChain * @author ingo * @version $Id: RandomSplitMethodValidationChain.java,v 2.5 2003/07/03 16:01:30 fischer Exp $ */public class RandomSplitMethodValidationChain extends MethodValidationChain { private double splitRatio; public IOObject[] apply() throws OperatorException { IOContainer input = getInput(); SplittedExampleSet eSet = new SplittedExampleSet((ExampleSet)input.getInput(ExampleSet.class), splitRatio); eSet.selectSingleSubset(0); ExampleSet methodExampleSet = (ExampleSet)useMethod(eSet).getInput(ExampleSet.class); SplittedExampleSet newInputSet = (SplittedExampleSet)eSet.clone(); newInputSet.setAttributes(methodExampleSet); learn(newInputSet); newInputSet.selectSingleSubset(1); IOContainer evalRes = evaluate(newInputSet); PerformanceVector pv = (PerformanceVector)evalRes.getInput(PerformanceVector.class); setResult(pv.getMainCriterion()); return new IOObject[] { pv, null }; } public void initApply() throws OperatorException { super.initApply(); splitRatio = getParameterAsDouble("split_ratio"); } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeDouble("split_ratio", "Relative size of the training set.", 0, 1, 0.7)); return types; } public int getNumberOfValidationSteps() { return 1; } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -