⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 validationchain.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.operator.learner.Model;import edu.udo.cs.yale.operator.performance.PerformanceVector;import edu.udo.cs.yale.operator.performance.PerformanceCriterion;/** Abstract superclass of operator chains that split an {@link ExampleSet} into a training *  and test set and return a performance vector. The two inner operators must be a  *  learner returning a {@link Model} and an operator or operator chain that can *  apply this model and returns a {@link PerformanceVector}. Hence the second inner operator *  usually is an operator chain containing a model applier and a performance evaluator. * *  @author ingo, simon *  @version $Id: ValidationChain.java,v 2.7 2003/05/14 13:33:20 fischer Exp $ */public abstract class ValidationChain extends OperatorChain {    private static final Class[] OUTPUT_CLASSES = { PerformanceVector.class };    private static final Class[] INPUT_CLASSES =  { ExampleSet.class };    private PerformanceCriterion lastPerformance;    private IOContainer learnResult;        private boolean methodEvaluation;    public ValidationChain() {	addValue(new Value("performance", "The last performance (main criterion).") {		public double getValue() {		    if (lastPerformance != null)			return lastPerformance.getValue();		    else			return Double.NaN;		}	    });	addValue(new Value("variance", "The variance of the last performance (main criterion).") {		public double getValue() {		    if (lastPerformance != null)			return lastPerformance.getVariance();		    else			return Double.NaN;		}	    });    }    /** Returns the maximum number of innner operators. */    public int getMaxNumberOfInnerOperators() { return 2; }    /** Returns the minimum number of innner operators. */    public int getMinNumberOfInnerOperators() { return 2; }    /** returns the the classes this operator expects as input. */    public Class[] getOutputClasses() { return OUTPUT_CLASSES; }    /** returns the the classes this operator provides as output. */    public Class[] getInputClasses() { return INPUT_CLASSES; }    /** Checks the correctness of the input and output classes requested and provided,     *  respectively, by the encapsulated inner operators of the <code>ValidationChain</code>.     *  These input and output classes are OK, if the first inner operator returns a model and     *  the second returns a performance vector.     *  The method returns the output classes of the second encapsulated inner operator.     */    public Class[] checkIO(Class[] input) throws IllegalInputException {	Operator learner   = getLearner();	Operator evaluator = getEvaluator();	input = learner.checkIO(input);	if (!IODescription.containsClass(Model.class, input))	    throw new IllegalInputException(learner.getName() + " doesn't provide model", this);	Class[] newInput = new Class[input.length+1];	for (int i = 0; i < input.length; i++) {	    newInput[i] = input[i];	}	newInput[newInput.length-1] = ExampleSet.class;	input = evaluator.checkIO(newInput);	// ???	if (!IODescription.containsClass(PerformanceVector.class, input))	    throw new IllegalInputException(evaluator.getName() + " does not provide performance vector", this);	return new Class[] { PerformanceVector.class };    }    /** Returns the first encapsulated inner operator (or operator chain),     *  i.e. the learning operator (chain). */    private Operator getLearner() { return getOperator(0); }    /** Returns the second encapsulated inner operator (or operator chain),     *  i.e. the application and evaluation operator (chain) */    private Operator getEvaluator() { return getOperator(1); }	    /** Can be used by subclasses to set the performance of the example set. */    protected void setResult(PerformanceCriterion pc) { lastPerformance = pc; }    /** Applies the learner (= first encapsulated inner operator). */    protected IOContainer learn(ExampleSet trainingSet) throws OperatorException {	return learnResult = getLearner().apply(getInput().prepend(new IOObject[] { trainingSet }));    }    /** Applies the applier and evaluator (= second encapsulated inner operator).      *  In order to reuse possibly created predicted label attributes, we do the following:     *  We compare the predicted label of <code>testSet</code> before and     *  after applying the inner operator. If it changed, the predicted label is removed again.     *  No outer operator could ever see it. */    protected IOContainer evaluate(ExampleSet testSet) throws OperatorException {	if (learnResult == null) {	    throw new RuntimeException("Wrong use of ValidationChain.evaluate(ExampleSet): " +				       "No preceding invocation of learn(ExampleSet)!");	}  	Attribute predictedBefore = testSet.getPredictedLabel();	IOContainer result = getEvaluator().apply(learnResult.append(new IOObject[] { testSet }));  	Attribute predictedAfter = testSet.getPredictedLabel();  	if ((predictedAfter != null) &&  	    ((predictedBefore == null) ||  	     (predictedBefore.getIndex() != predictedAfter.getIndex()))) {  	    testSet.clearPredictedLabel();  	    testSet.getExampleTable().removeAttribute(predictedAfter);	      	}	learnResult = null;	return result;    }    protected void setLastPerformance(PerformanceCriterion pc) {	lastPerformance = pc;    }    public abstract int getNumberOfValidationSteps();    public int getNumberOfSteps() {	return getNumberOfValidationSteps() * super.getNumberOfChildrensSteps() + 1;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -