📄 yagga.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.features.ga;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.generator.*;import edu.udo.cs.yale.operator.features.*;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.AttributeSelectionExampleSet;import java.util.ArrayList;import java.util.List;import java.util.LinkedList;/** YAGGA is an acronym for Yet Another Generating Genetic Algorithm. * Its approach to generating new attributes differs from the original one. * The (generating) mutation can do one of the following things with * different probabilities: * <ul> * <li>Probability {@yale.math p/4}: Add a newly generated attribute to the feature vector</li> * <li>Probability {@yale.math p/4}: Add a randomly chosen original attribute to the feature vector</li> * <li>Probability {@yale.math p/2}: Remove a randomly chosen attribute from the feature vector</li> * </ul> * Thus it is guaranteed that the length of the feature vector can both * grow and shrink. On average it will keep its original length, unless * longer or shorter individuals prove to have a better fitness. * * @yale.xmlclass YAGGA * @author ingo, simon * @version $Id: YAGGA.java,v 2.4 2003/07/09 15:19:58 fischer Exp $ */public class YAGGA extends GeneticAlgorithm { /** Returns the generating crossover <tt>PopulationOperator</tt>. */ PopulationOperator getCrossoverPopulationOperator() { double pCrossover = getParameterAsDouble("p_crossover"); int crossoverType = getParameterAsInt("crossover_type"); return new UnbalancedCrossover(crossoverType, pCrossover, false); } /** Returns the generating mutation <tt>PopulationOperator</tt>. */ PopulationOperator getMutationPopulationOperator() throws OperatorException { double pMutation = getParameterAsDouble("p_mutation"); // creates the generators ArrayList generators = new ArrayList(); if (getParameterAsBoolean("reciprocal_value")) { FeatureGenerator g = new ReciprocalValueGenerator(true); generators.add(g); } if (getParameterAsBoolean("function_characteristica")) { FeatureGenerator g = new FunctionCharacteristicaGenerator(); generators.add(g); } if (getParameterAsBoolean("use_plus")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(0, true); generators.add(g); } if (getParameterAsBoolean("use_diff")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(1, true); generators.add(g); } if (getParameterAsBoolean("use_mult")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(2, true); generators.add(g); } if (getParameterAsBoolean("use_div")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(3, true); generators.add(g); } if (generators.size()==0) { LogService.logMessage("No FeatureGenerators specified for " + getName() + ".", LogService.WARNING); } // adds generation to the PreEval - List. ExampleSet eSet = (ExampleSet)getInput(ExampleSet.class, false); List attributes = new LinkedList(); for (int i = 0; i < eSet.getNumberOfAttributes(); i++) { attributes.add(eSet.getAttribute(i)); } // adds generation to the PreEval - List. return new GeneratingMutation(attributes, pMutation, generators); } /** Creates a initial population. */ public Population createInitialPopulation(AttributeSelectionExampleSet es) { Population pop1 = super.createInitialPopulation(es); Population pop2 = new Population(); for (int i = 0; i < pop1.getNumberOfIndividuals(); i++) { pop2.add(new AttributeSelectionExampleSet(pop1.get(i).createExampleSet())); } return pop2; } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeInt("max_number_of_new_attributes", "Max number of attributes to generate for an individual.", 0, Integer.MAX_VALUE, 1)); types.add(new ParameterTypeDouble("p_generate", "Probability for an individual to be selected for generation.", 0, 1, 0.1)); types.add(new ParameterTypeBoolean("reciprocal_value", "Generate reciprocal values.", true)); types.add(new ParameterTypeBoolean("function_characteristica", "Generate function characteristica (for C9).", false)); types.add(new ParameterTypeBoolean("use_plus", "Generate sums.", true)); types.add(new ParameterTypeBoolean("use_diff", "Generate differences.", true)); types.add(new ParameterTypeBoolean("use_mult", "Generate products.", true)); types.add(new ParameterTypeBoolean("use_div", "Generate quotients.", true)); return types; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -