⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 unbalancedcrossover.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.features.ga;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.tools.RandomGenerator;import java.util.List;import java.util.ListIterator;import java.util.LinkedList;/** This <tt>PopulationOperator</tt> applies a crossover on two example sets.  *  Crossover type can be ONE_POINT or UNIFORM. In difference to SelectionCrossover  *  the attribute vectors can have different lengths. <br> *  This crossover type should only be used for SINGLE_VALUEs! *  @author ingo *  @version $Id: UnbalancedCrossover.java,v 2.3 2003/06/29 14:40:43 mierswa Exp $ */public class UnbalancedCrossover extends SelectionCrossover {    /** Creates a new generating crossover with the given type which will     *  be applied with the given probability. ParentsSurvive indicates if the original attributes     *  maintain.     */    public UnbalancedCrossover(int type, double prob, boolean parentsSurvive) {	super(type, prob, parentsSurvive, RandomGenerator.getGlobalRandomGenerator());    }    /** Applies the crossover. Works directly on the given example sets.      */    public void crossover(ExampleSet es1, ExampleSet es2) {	LinkedList dummyList1 = null;	LinkedList dummyList2 = null;	switch (type) {	case SelectionCrossover.ONE_POINT:	    int maxSize = Math.max(es1.getNumberOfAttributes(), es2.getNumberOfAttributes());	    if (maxSize < 2) return;	    int splitPoint = 1 + random.nextInt(maxSize - 1);	    dummyList1 = new LinkedList();	    dummyList2 = new LinkedList();	    while (es1.getNumberOfAttributes() > splitPoint) 		dummyList1.add(es1.removeAttribute(splitPoint));	    while (es2.getNumberOfAttributes() > splitPoint) 		dummyList2.add(es2.removeAttribute(splitPoint));	    es1.addAllAttributes(dummyList2);	    es2.addAllAttributes(dummyList1);	    break;	case SelectionCrossover.UNIFORM:	    int biggerSize = Math.max(es1.getNumberOfAttributes(), es2.getNumberOfAttributes());	    boolean[] swap = new boolean[biggerSize];  	    for (int i = 0; i < swap.length; i++) {  		swap[i] = random.nextBoolean();  	    }	    dummyList1 = new LinkedList();	    dummyList2 = new LinkedList();	    for (int i = swap.length - 1; i >= 0; i--) {		if (swap[i]) {		    if (i < es1.getNumberOfAttributes()) 			dummyList1.addFirst(es1.removeAttribute(i));		    if (i < es2.getNumberOfAttributes()) 			dummyList2.addFirst(es2.removeAttribute(i));		}	    }	    es1.addAllAttributes(dummyList2);	    es2.addAllAttributes(dummyList1);	    break;	default:	}    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -