⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 generatinggeneticalgorithm.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.features.ga;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.generator.*;import edu.udo.cs.yale.operator.features.*;import edu.udo.cs.yale.tools.LogService;import java.util.ArrayList;import java.util.List;/** In contrast to its superclass {@link GeneticAlgorithm}, the {@link GeneratingGeneticAlgorithm} *  generates new attributes and thus can change the length of an individual. Therfore specialized mutation *  and crossover operators are being applied. Generators are chosen at random from a list of generators *  specified by boolean parameters. * *  @yale.reference Ritthoff/etal/2001a *  @yale.xmlclass GeneratingGeneticAlgorithm *  @author ingo *  @version $Id: GeneratingGeneticAlgorithm.java,v 2.5 2003/08/27 15:28:14 mierswa Exp $ */public class GeneratingGeneticAlgorithm extends GeneticAlgorithm {    public void initApply() throws OperatorException {	super.initApply();		PopulationOperator generator = getGeneratingPopulationOperator();	if (generator != null)	    addPreEvaluationPopulationOperator(generator);    }    /** Returns an <code>UnbalancedCrossover</code>. */    PopulationOperator getCrossoverPopulationOperator() {	double pCrossover = getParameterAsDouble("p_crossover");	int crossoverType = getParameterAsInt("crossover_type");	return new UnbalancedCrossover(crossoverType, pCrossover, false);    }    /** Returns a specialized mutation, i.e. a <code>AttributeGenerator</code> */    PopulationOperator getGeneratingPopulationOperator() {	int    noOfNewAttributes = getParameterAsInt("max_number_of_new_attributes"); 	double pGenerate         = getParameterAsDouble("p_generate");		// erzeugt die Generatoren	ArrayList generators = new ArrayList();		if (getParameterAsBoolean("reciprocal_value")) {	    FeatureGenerator g =  new ReciprocalValueGenerator(true);	    generators.add(g);	}	if (getParameterAsBoolean("function_characteristica")) {	    FeatureGenerator g =  new FunctionCharacteristicaGenerator();	    generators.add(g);	}	if (getParameterAsBoolean("use_plus")) {	    FeatureGenerator g =  new BasicArithmeticOperationGenerator(0, true);	    generators.add(g);	}	if (getParameterAsBoolean("use_diff")) {	    FeatureGenerator g =  new BasicArithmeticOperationGenerator(1, true);	    generators.add(g);	}	if (getParameterAsBoolean("use_mult")) {	    FeatureGenerator g =  new BasicArithmeticOperationGenerator(2, true);	    generators.add(g);	}	if (getParameterAsBoolean("use_div")) {	    FeatureGenerator g =  new BasicArithmeticOperationGenerator(3, true);	    generators.add(g);	}	if (generators.size()==0) {	    LogService.logMessage("No FeatureGenerators specified for " + getName() + ".", LogService.WARNING);	} 		// fuegt das Generieren in die PreEval - Liste ein.	return new AttributeGenerator(pGenerate, noOfNewAttributes, generators);    }        public List getParameterTypes() {	List types = super.getParameterTypes();	types.add(new ParameterTypeInt("max_number_of_new_attributes", "Max number of attributes to generate for an individual.", 0, Integer.MAX_VALUE, 1));	types.add(new ParameterTypeDouble("p_generate", "Probability for an individual to be selected for generation.", 0, 1, 0.1));	types.add(new ParameterTypeBoolean("reciprocal_value", "Generate reciprocal values.", true));	types.add(new ParameterTypeBoolean("function_characteristica", "Generate function characteristica (for C9).", false));	types.add(new ParameterTypeBoolean("use_plus", "Generate sums.", true));	types.add(new ParameterTypeBoolean("use_diff", "Generate differences.", true));	types.add(new ParameterTypeBoolean("use_mult", "Generate products.", true));	types.add(new ParameterTypeBoolean("use_div", "Generate quotients.", true));	return types;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -