📄 directedgeneratinggeneticalgorithm.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.features.ga;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.FatalException;import edu.udo.cs.yale.generator.*;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.operator.features.*;import java.util.ArrayList;import java.util.List;import java.util.ListIterator;/** By using a generating genetic algorithm which generates new * attributes and do not only select them it can happen that many * irrelevant attributes are generated. In addition, these individuals * can be randomly generated and deleted several times. * <br/> * It might be a good idea to make the generating genetic algorithm a * sort of smarter by using an information gain criterion to decide, which * attribute should be selected or should be used to generate another * one. With the new regression information gain criterion this is * possible for regression problems too. * <br/> * The attributes get their information gain values. Then the more * informative attributes will be preferably selected and used for * generating new attributes. Therefore it is postulated that it is * better to generate new attributes from the informative ones. * * @yale.xmlclass DirectedGeneratingGeneticAlgorithm * @author ingo * @version $Id: DirectedGeneratingGeneticAlgorithm.java,v 2.3 2003/04/04 11:59:28 fischer Exp $ */public class DirectedGeneratingGeneticAlgorithm extends GeneratingGeneticAlgorithm { /** Ruft <tt>initApply()</tt> der Oberklasse auf und setzt noch entsprechende Parameter. Zusätzlich wird noch * InformationGain in die preEvaluation - Liste gepackt. */ public void initApply() throws OperatorException { super.initApply(); if (getNumberOfOperators() != 3) { throw new FatalException("DirectedGeneratingGeneticAlgorithm needs three operators: " + "a normal GGA experiment chain, a learner and a model applier to find the information gain!"); } //addPostEvaluationPopulationOperator(new RemoveUnusedAttributes()); } PopulationOperator[] getPreProcessingPopulationOperators() { // ratio gain boolean ratioGain = getParameterAsBoolean("use_ratio_gain"); // epsilon double epsilon = getParameterAsDouble("epsilon"); // usePredictedLabel boolean usePredictedLabel = getParameterAsBoolean("use_predicted_label"); return new PopulationOperator[] { new InformationGain(getOperator(1), getOperator(2), epsilon, usePredictedLabel, ratioGain) }; } /** Liefert den Mutations <tt>PopulationOperator</tt>, kann von Unterklassen überschireben werden. */ PopulationOperator getMutationPopulationOperator() { double pMutation = getParameterAsDouble("p_mutation"); double leftBound = getParameterAsDouble("lower_mutation_bound"); double rightBound = getParameterAsDouble("upper_mutation_bound"); return new DirectedMutation(pMutation, leftBound, rightBound); } /** Liefert den generierenden <tt>PopulationOperator</tt>, kann von Unterklassen überschrieben werden. */ PopulationOperator getGeneratingPopulationOperator() { int noOfNewAttributes = getParameterAsInt("max_number_of_new_attributes"); double pGenerate = getParameterAsDouble("p_generate"); // erzeugt die Generatoren ArrayList generators = new ArrayList(); if (getParameterAsBoolean("reciprocal_value")) { FeatureGenerator g = new ReciprocalValueGenerator(true); generators.add(g); } if (getParameterAsBoolean("function_characteristica")) { FeatureGenerator g = new FunctionCharacteristicaGenerator(); generators.add(g); } if (getParameterAsBoolean("use_plus")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(0, true); generators.add(g); } if (getParameterAsBoolean("use_diff")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(1, true); generators.add(g); } if (getParameterAsBoolean("use_mult")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(2, true); generators.add(g); } if (getParameterAsBoolean("use_div")) { FeatureGenerator g = new BasicArithmeticOperationGenerator(3, true); generators.add(g); } if (generators.size()==0) { LogService.logMessage("No FeatureGenerators specified for " + getName() + ".", LogService.WARNING); } double leftBound = getParameterAsDouble("lower_generation_bound"); double rightBound = getParameterAsDouble("upper_generation_bound"); // fuegt das Generieren in die PreEval - Liste ein. return new DirectedAttributeGenerator(pGenerate, noOfNewAttributes, generators, leftBound, rightBound); } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeDouble("lower_generation_bound", "Lower bound for the generation probability.", 0, 1, 0.1)); types.add(new ParameterTypeDouble("upper_generation_bound", "Upper bound for the generation probability.", 0, 1, 0.9)); types.add(new ParameterTypeBoolean("use_ratio_gain", "If set to true the ratio gain criterion is used.", true)); types.add(new ParameterTypeDouble("epsilon", "Variation range of attribute values for the attribute information gain.", 0, 1, 0.1)); types.add(new ParameterTypeBoolean("use_predicted_label", "If set to true, the predicted label is used for the attribute information gain.", true)); types.add(new ParameterTypeDouble("lower_mutation_bound", "Lower bound for the mutation probability.", 0, 1, 0.1)); types.add(new ParameterTypeDouble("upper_mutation_bound", "Upper bound for the mutation probability.", 0, 1, 0.9)); types.add(new ParameterTypeBoolean("reciprocal_value", "Generate reciprocal values.", true)); types.add(new ParameterTypeBoolean("function_charactersitica", "Generate function characteristica (for C9).", false)); types.add(new ParameterTypeBoolean("use_plus", "Generate sums.", true)); types.add(new ParameterTypeBoolean("use_diff", "Generate differences.", true)); types.add(new ParameterTypeBoolean("use_mult", "Generate products.", true)); types.add(new ParameterTypeBoolean("use_div", "Generate quotients.", true)); return types; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -