📄 forwardweighting.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.features.weighting;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.AttributeWeightedExampleSet;import edu.udo.cs.yale.operator.features.*;import edu.udo.cs.yale.tools.LogService;/** This operator performs the weighting under the naive assumption that the features are independent from each other. * Each attribute is weighted with a linear search. This approach may deliver good results after short time if * the features indeed are not highly correlated. * * @version $Id: ForwardWeighting.java,v 1.2 2003/08/27 21:47:21 mierswa Exp $ */public class ForwardWeighting extends FeatureWeighting { public PopulationOperator getWeightingOperator(String parameter) { double[] weights = new double[] { 0.25d, 0.5d, 0.75d, 1.0d }; if ((parameter != null) && (parameter.length() != 0)) { try { String[] weightStrings = parameter.split(" "); weights = new double[weightStrings.length]; for (int i = 0; i < weights.length; i++) weights[i] = Double.parseDouble(weightStrings[i]); } catch (Exception e) { LogService.logMessage("Could not create weights: " + e.getMessage(), LogService.ERROR); weights = new double[] { 0.25d, 0.5d, 0.75d, 1.0d }; } } return new SimpleWeighting(0.0d, weights); } public Population createInitialPopulation(ExampleSet es) { Population initPop = new Population(); AttributeWeightedExampleSet nes = new AttributeWeightedExampleSet((ExampleSet)es.clone()); for (int i = 0; i < es.getNumberOfAttributes(); i++) nes.setWeight(i, 0.0d); for (int i = 0; i < es.getNumberOfAttributes(); i++) { AttributeWeightedExampleSet forwardES = (AttributeWeightedExampleSet)nes.clone(); forwardES.setWeight(i, 1.0d); initPop.add(forwardES); } return initPop; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -