📄 evolutionaryweighting.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.features.weighting;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.example.AttributeWeightedExampleSet;import edu.udo.cs.yale.operator.features.*;import edu.udo.cs.yale.operator.features.ga.*;import edu.udo.cs.yale.operator.performance.PerformanceVector;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.Value;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.tools.RandomGenerator;import java.util.List;import java.util.LinkedList;import java.util.Random;/** This operator performs the weighting of features with a evolutionary approach. * * @version $Id: EvolutionaryWeighting.java,v 1.4 2003/08/26 04:48:07 mierswa Exp $ */public class EvolutionaryWeighting extends FeatureOperator { /** The selection modes which are usable with this genetic algorithm. */ private static final String[] SELECTION_MODES = { "keep_best_n", "roulette_wheel", "keep_best" }; /** Indicates that the n best individuals should be used for the next generation. */ private static final int KEEP_BEST_N = 0; /** Indicates that a roulette wheel selection should be used for the next generation. */ private static final int ROULETTE_WHEEL = 1; /** Indicates that only the best individual should be used for the next generation. */ private static final int KEEP_BEST = 2; /** The number of individuals in each population. */ private int numberOfIndividuals; /** The maximum generation. */ private int maxGeneration; /** The maximum number of generations without improval. */ private int maxWithoutImproval; /** The list with pre-evaluation population operators. */ private List preOps = new LinkedList(); /** The list with post-evaluation population operators. */ private List postOps = new LinkedList(); public void initApply() throws OperatorException { super.initApply(); this.numberOfIndividuals = getParameterAsInt("population_size"); this.maxGeneration = getParameterAsInt("maximum_number_of_generations"); this.maxWithoutImproval = getParameterAsInt("generations_without_improval"); preOps = new LinkedList(); // selection int selectionMode = getParameterAsInt("selection_mode"); switch (selectionMode) { case KEEP_BEST_N: preOps.add(new KeepBest(numberOfIndividuals)); break; case ROULETTE_WHEEL: preOps.add(new RouletteWheel(numberOfIndividuals, RandomGenerator.getGlobalRandomGenerator(), getParameterAsBoolean("keep_best_individual"))); break; case KEEP_BEST: preOps.add(new BestSelection()); break; } // crossover & mutation preOps.add(new WeightingCrossover(getParameterAsInt("crossover_type"), getParameterAsDouble("p_crossover"))); WeightingMutation weighting = new WeightingMutation(getParameterAsDouble("init_variance")); preOps.add(weighting); postOps = new LinkedList(); // mutation adaption if (getParameterAsBoolean("1_5_rule")) postOps.add(new VarianceAdaption(weighting)); } public boolean solutionGoodEnough(Population population) { return ((population.getGeneration() >= maxGeneration) || (population.getGenerationsWithoutImproval() >= maxWithoutImproval)); } public List getPreEvaluationPopulationOperators() { return preOps; } public List getPostEvaluationPopulationOperators() { return postOps; } public Population createInitialPopulation(ExampleSet exampleSet) { Population initPop = new Population(); for (int i = 0; i < numberOfIndividuals; i++) { AttributeWeightedExampleSet nes = new AttributeWeightedExampleSet((ExampleSet)exampleSet.clone()); for (int j = 0; j < nes.getNumberOfAttributes(); j++) { nes.setWeight(j, RandomGenerator.getGlobalRandomGenerator().nextDouble()); //nes.setWeight(j, 1.0d); } initPop.add(nes); } return initPop; } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeInt("population_size", "Number of individuals per generation.", 1, Integer.MAX_VALUE, 5)); types.add(new ParameterTypeInt("maximum_number_of_generations", "The maximum number of generations.", 1, Integer.MAX_VALUE, 10)); types.add(new ParameterTypeInt("generations_without_improval", "The maximum number of generations without improval.", 1, Integer.MAX_VALUE, 5)); types.add(new ParameterTypeCategory("selection_mode", "The selection mode for this genetic algorithm.", SELECTION_MODES, KEEP_BEST_N)); types.add(new ParameterTypeBoolean("keep_best_individual", "If set to true, the best individual of each generations is guaranteed to be selected for the next generation (elitist selection, only used for roulette wheel).", false)); types.add(new ParameterTypeBoolean("1_5_rule", "If set to true, the 1/5 rule for variance adaption is used.", true)); types.add(new ParameterTypeDouble("init_variance", "The init variance for each mutation.", 0.0d, Double.POSITIVE_INFINITY, 1.0d)); types.add(new ParameterTypeDouble("p_crossover", "Probability for an individual to be selected for crossover.", 0, 1, 0.3)); types.add(new ParameterTypeCategory("crossover_type", "Type of the crossover.", WeightingCrossover.CROSSOVER_TYPES, WeightingCrossover.UNIFORM)); return types; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -