📄 featureweighting.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.features.weighting;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.AttributeWeightedExampleSet;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.features.*;import edu.udo.cs.yale.operator.OperatorException;import java.util.List;import java.util.LinkedList;/** This operator performs the weighting under the naive assumption that the features are independent from each other. * Each attribute is weighted with a linear search. This approach may deliver good results after short time if * the features indeed are not highly correlated. <br /> * The ideas of forward selection and backward elimination can easily be used for the weighting with help * of a {@link SimpleWeighting}. * * @version $Id: FeatureWeighting.java,v 1.3 2003/08/27 21:47:21 mierswa Exp $ */public abstract class FeatureWeighting extends FeatureOperator { private List preOps = new LinkedList(); private List postOps = new LinkedList(); private int generationsWOImp = 0; public abstract PopulationOperator getWeightingOperator(String parameter); public void initApply() throws OperatorException { super.initApply(); generationsWOImp = getParameterAsInt("generations_without_improval"); preOps = new LinkedList(); preOps.add(new KeepBest(getParameterAsInt("keep_best"))); preOps.add(getWeightingOperator(getParameterAsString("weights"))); preOps.add(new RedundanceRemoval()); postOps = new LinkedList(); } public boolean solutionGoodEnough(Population population) { boolean stop = population.empty() || (population.getGenerationsWithoutImproval() >= generationsWOImp); return stop; } public List getPreEvaluationPopulationOperators() { return preOps; } public List getPostEvaluationPopulationOperators() { return postOps; } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeInt("keep_best", "Keep the best n individuals in each generation.", 1, Integer.MAX_VALUE, 1)); types.add(new ParameterTypeInt("generations_without_improval", "Stop after n generations without improval of the performance.", 1, Integer.MAX_VALUE, 1)); types.add(new ParameterTypeString("weights", "Use these weights for the creation of individuals in each generation.", true)); return types; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -