⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 featureweighting.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.features.weighting;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.AttributeWeightedExampleSet;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.features.*;import edu.udo.cs.yale.operator.OperatorException;import java.util.List;import java.util.LinkedList;/** This operator performs the weighting under the naive assumption that the features are independent from each other. *  Each attribute is weighted with a linear search. This approach may deliver good results after short time if  *  the features indeed are not highly correlated. <br /> *  The ideas of forward selection and backward elimination can easily be used for the weighting with help  *  of a {@link SimpleWeighting}. *    *  @version $Id: FeatureWeighting.java,v 1.3 2003/08/27 21:47:21 mierswa Exp $ */public abstract class FeatureWeighting extends FeatureOperator {    private List preOps  = new LinkedList();    private List postOps = new LinkedList();    private int generationsWOImp = 0;    public abstract PopulationOperator getWeightingOperator(String parameter);    public void initApply() throws OperatorException {	super.initApply();	generationsWOImp = getParameterAsInt("generations_without_improval");	preOps = new LinkedList();	preOps.add(new KeepBest(getParameterAsInt("keep_best")));	preOps.add(getWeightingOperator(getParameterAsString("weights")));	preOps.add(new RedundanceRemoval());	postOps = new LinkedList();    }    public boolean solutionGoodEnough(Population population) {	boolean stop = population.empty() || (population.getGenerationsWithoutImproval() >= generationsWOImp);	return stop;    }    public List getPreEvaluationPopulationOperators() {	return preOps;    }    public List getPostEvaluationPopulationOperators() {	return postOps;    }    public List getParameterTypes() {	List types = super.getParameterTypes();	types.add(new ParameterTypeInt("keep_best", "Keep the best n individuals in each generation.", 1, Integer.MAX_VALUE, 1));	types.add(new ParameterTypeInt("generations_without_improval", "Stop after n generations without improval of the performance.", 1, Integer.MAX_VALUE, 1));	types.add(new ParameterTypeString("weights", "Use these weights for the creation of individuals in each generation.", true));	return types;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -