⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 featureoperator.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.features;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.AttributeWeightedExampleSet;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.Value;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.UserError;import edu.udo.cs.yale.operator.OperatorChain;import edu.udo.cs.yale.operator.Operator;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.IOObject;import edu.udo.cs.yale.operator.IOContainer;import edu.udo.cs.yale.operator.IODescription;import edu.udo.cs.yale.operator.IllegalInputException;import edu.udo.cs.yale.operator.performance.PerformanceVector;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.tools.Tools;import java.util.List;import java.util.Iterator;/** This class is the superclass of all feature selection and generation operators. *  It provides an easy to use plug-in interface for operators that modify populations. *  Subclasses just have to supply lists of <tt>PopulationOperators</tt> by overriding *  <tt>getPreEvalutaionPopulationOperators()</tt> and <tt>getPostEvalutaionPopulationOperators()</tt> *  during a loop which will terminate if <tt>solutionGoodEnough()</tt> returns true. * *  <h4>Values:</h4> *  <ul> *    <li><tt>generation</tt> number of the the current generation *    <li><tt>best</tt> all generations' best individual's performance *    <li><tt>performance</tt> this generstion's best individual's performance *  </ul> * *  <h4>Operator-Input</h4> *  <ol> *    <li><tt>ExampleSet</tt> the original example set *  </ol> *  <h4>Operator-Output</h4> *  <ol> *    <li><tt>ExampleSet</tt> the best example set *    <li><tt>PerformanceVector</tt> its performance *  </ol> * *  @author simon *  @version $Id: FeatureOperator.java,v 2.11 2003/08/29 00:39:32 mierswa Exp $ <br> */public abstract class FeatureOperator extends OperatorChain {    private static final Class[] OUTPUT_CLASSES = { ExampleSet.class, FeatureWeights.class, PerformanceVector.class };    private static final Class[] INPUT_CLASSES = { ExampleSet.class };    private int evalCount;    private int evalSum;    private Population population;    public FeatureOperator() {	addValue(new Value("generation", "The number of the current generation.") {		public double getValue() {		    if (population == null) return 0;		    return population.getGeneration();		}	    });	addValue(new Value("performance", "The performance of the current generation (main criterion).") {		public double getValue() {		    if (population == null) return Double.NaN;		    if (population.lastBest() == null) return Double.NaN;		    PerformanceVector pv = (PerformanceVector)population.lastBest().getUserData("performance");		    if (pv == null) return Double.NaN;		    return pv.getMainCriterion().getValue();		}	    });	addValue(new Value("best", "The performance of the best individual ever (main criterion).") {		public double getValue() {  		    if (population == null) return Double.NaN;		    AttributeWeightedExampleSet eSet = population.bestEver();		    if (eSet != null) {			PerformanceVector pv = (PerformanceVector)eSet.getUserData("performance");			if (pv == null) return Double.NaN;			return pv.getMainCriterion().getValue();		    } else {			return Double.NaN;		    }		}	    });    }    /** Create an initial population. The example set will be cloned     *  before the method is invoked. */    public abstract Population createInitialPopulation(ExampleSet es);    /** Must return a list of <tt>PopulationOperator</tt>s. All operators     *  are applied to the population in their order within the list before     *  the population is evaluated. */    public abstract List getPreEvaluationPopulationOperators();    /** Must return a list of <tt>PopulationOperator</tt>s. All operators     *  are applied to the population in their order within the list after     *  the population is evaluated. */     public abstract List getPostEvaluationPopulationOperators();    /** Has to return true if the main loop can be stopped because     *  a solution is concidered to be good enough according to     *  some criterion. */    public abstract boolean solutionGoodEnough(Population pop) throws OperatorException;    public void initApply() throws OperatorException {	super.initApply();    }    public Class[] getOutputClasses() { return OUTPUT_CLASSES; }    public Class[] getInputClasses() { return INPUT_CLASSES; }        /** Returns true if and only if all inner operators accept their precessors' ouput     *  as input. */    public Class[] checkIO(Class[] input) throws IllegalInputException {	Class[] innerOutput = getOperator(0).checkIO(input);	if (!IODescription.containsClass(PerformanceVector.class, innerOutput)) {	    throw new IllegalInputException(getOperator(0).getName() + " does not provide PerformanceVector", this);	}	return OUTPUT_CLASSES;    }    /** Applies the feature operator:     *  <ol>     *    <li>create an initial population     *    <li>evaluate the initial population     *    <li>loop as long as solution is not good enough     *    <ol>     *      <li>apply all pre evaluation operators     *      <li>evaluate the population     *      <li>update the population's best individual     *      <li>apply all post evaluation operators     *    </ol>     *    <li>return all generation's best individual     *  </ol>     */    public IOObject[] apply() throws OperatorException {	evalCount = evalSum = 0;	ExampleSet es = (ExampleSet)getInput().getInput(ExampleSet.class);	population = createInitialPopulation((ExampleSet)es.clone());	LogService.logMessage(getName() + ": initial population has " + population.getNumberOfIndividuals() + " individuals.", 			      LogService.OPERATOR);	evaluate(population);	population.updateEvaluation();	inApplyLoop();	while (!solutionGoodEnough(population)) {	    if (isMaximumReached()) { break; }	    population.nextGeneration();	    applyOpList(getPreEvaluationPopulationOperators(), population);	    LogService.logMessage(Tools.ordinalNumber(population.getGeneration()) + " generation has " + 				  population.getNumberOfIndividuals() + " individuals.", LogService.OPERATOR);	    LogService.logMessage(getName() + ": evaluating "+ Tools.ordinalNumber(population.getGeneration()) + " population.", 				  LogService.OPERATOR);	    evaluate(population);	    population.updateEvaluation();	    inApplyLoop();	    applyOpList(getPostEvaluationPopulationOperators(), population);	}	LogService.logMessage(getName() + " finished. " + evalCount+"/"+evalSum + " evaluations." , LogService.TASK);	AttributeWeightedExampleSet weightedResultSet = population.bestEver();	FeatureWeights weights = new FeatureWeights(); 	for (int i = 0; i < weightedResultSet.getNumberOfAttributes(); i++) 	    weights.addWeight(weightedResultSet.getAttribute(i).getName(), weightedResultSet.getWeight(i));	ExampleSet result = weightedResultSet.createExampleSet();	return new IOObject[] { result, weights, (PerformanceVector)population.bestEver().getUserData("performance") };    }    /** Applies all PopulationOperators in opList to the population. */    void applyOpList(List opList, Population population) throws OperatorException {	Iterator i = opList.listIterator();	while (i.hasNext()) {	    PopulationOperator op = (PopulationOperator)i.next();	    try {		op.operate(population);	    } catch (Exception e) {		throw new UserError(this, e, 108, e.getMessage());	    }	}    }    /** Evaluates all individuals in the population by applying the inner operators. */    void evaluate(Population population) throws OperatorException {		Operator operatorChain = getOperator(0);	for (int i=0 ; i < population.getNumberOfIndividuals(); i++){	    evalSum++;	    //ExampleSet individual = population.get(i).createExampleSet();	    AttributeWeightedExampleSet individual = population.get(i);	    if (individual.getUserData("performance") == null) {		evalCount++;		IOObject[] operatorChainInput = new IOObject[] { individual.createExampleSet() };				PerformanceVector performanceVector = 		    (PerformanceVector)operatorChain.apply(getInput().append(operatorChainInput)).getInput(PerformanceVector.class);				individual.setUserData("performance", performanceVector);	    }	}    }    private boolean isMaximumReached() {	AttributeWeightedExampleSet eSet = population.bestEver();	if (eSet != null) {	    PerformanceVector pv = (PerformanceVector)eSet.getUserData("performance");	    if (pv == null) return false;	    else return pv.getMainCriterion().getMaxFitness() == pv.getMainCriterion().getFitness();	} else return false;    }    /** Returns the highest possible value for the maximum number of innner operators. */    public int getMaxNumberOfInnerOperators() { return 1; }    /** Returns 0 for the minimum number of innner operators. */    public int getMinNumberOfInnerOperators() { return 1; }    public int getNumberOfSteps() {	return 1;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -