📄 multiclasslearner.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.learner;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.OperatorChain;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.IOObject;import edu.udo.cs.yale.operator.IOContainer;import edu.udo.cs.yale.operator.IllegalInputException;import edu.udo.cs.yale.operator.performance.RunVector; // RK/2003/06/06: error estimation addedimport edu.udo.cs.yale.operator.performance.PerformanceVector; // RK/2003/06/06: error estimation addedimport edu.udo.cs.yale.operator.learner.Learner; // RK/2003/06/06: error estimation addedimport edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.tools.TempFileService;import edu.udo.cs.yale.tools.LogService;import java.io.File;import java.io.IOException;import java.util.List;/** This operator chain must contain exactly one inner operator which must (currently) be a SVMLightLearner * for classification. In order to classify example sets with more than two classifications, the inner * learner is applied once for each class. Thus, it generates a MultiModel consisting of numberOfClasses * submodels. When the MultiModel is applied, all submodels are applied and the class belonging to the * model with the highest confidence for the "positive" class is chosen. * * @yale.xmlclass MultiClassLearner * @see edu.udo.cs.yale.operator.learner.MultiModel * @see edu.udo.cs.yale.operator.learner.SVMLightLearner * @author Simon Fischer, Ingo Mierswa, Ralf Klinkenberg * @version $Id: MultiClassLearner.java,v 2.6 2003/09/03 09:57:02 fischer Exp $ */public class MultiClassLearner extends OperatorChain { // History: // - RK/2003/06/06: error estimation added; // // To do: // - generalize class to allow other learners than just SVMLightLearner as inner learner; private static final Class[] INPUT_CLASSES = { ExampleSet.class }; private static final Class[] OUTPUT_CLASSES = { MultiModel.class }; private int numberOfClasses; /** Iterates over all classes <i>i</i>. The * inner Learner is notified about the current class by setPositiveLabelIndex(i). Then * the learning algorithm is applied. A MultiModel is created from the generated models. */ public IOObject[] apply() throws OperatorException { ExampleSet eSet = (ExampleSet)getInput(ExampleSet.class); numberOfClasses = eSet.getLabel().getNumberOfClasses(); String filename = getParameterAsString("model_file"); Model[] models = new Model[numberOfClasses]; SVMLightLearner learner = (SVMLightLearner)getOperator(0); // collect performance estimations of the enclosed learners for averaging // RK/2003/06/06: performance estimation added RunVector innerPerformanceEstimations = new RunVector(); // RK/2003/06/06: performance estimation added for (int i = 0; i < numberOfClasses; i++) { learner.setPositiveLabelIndex(i + Attribute.FIRST_CLASS_INDEX); IOContainer learnResult = learner.apply(getInput().append(new IOObject[] { eSet })); models[i] = (Model)learnResult.getInput(Model.class); innerPerformanceEstimations.add(learner.getEstimatedPerformance()); // RK/2003/06/06: performance estimation added } MultiModel multiModel = new MultiModel(models); try { if (filename != null) multiModel.writeModel(getExperiment().resolveFileName(filename)); } catch (IOException e) { LogService.logMessage("MultiClassLearner'" + getName() + "': " + "Cannot write MultiModel to disc!", LogService.ERROR); } return new IOObject[] { multiModel, innerPerformanceEstimations.average() }; } public Class[] getInputClasses() { return INPUT_CLASSES; } public Class[] getOutputClasses() { return OUTPUT_CLASSES; } /** Ok if the only inner operator returns a learner. */ public Class[] checkIO(Class[] input) throws IllegalInputException { SVMLightLearner learner; try { learner = (SVMLightLearner)getOperator(0); } catch (ClassCastException e) { throw new IllegalInputException("MultiClassLearner '" + getName() + "': " + "Inner operator is not a SVMLightLearner.", this); } learner.checkIO(input); return new Class[] { MultiModel.class }; } /** Returns the maximum number of innner operators. */ public int getMaxNumberOfInnerOperators() { return 1; } /** Returns the minimum number of innner operators. */ public int getMinNumberOfInnerOperators() { return 1; } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeFile("model_file", "If this parameter is set, the model is written to a file.", true)); return types; } public int getNumberOfSteps() { return getNumberOfChildrensSteps() * numberOfClasses + 1; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -