⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wekalearner.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.learner;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.UserError;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.tools.Ontology;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.tools.WekaTools;import weka.classifiers.Classifier;import weka.core.Instances;import java.util.List;import java.util.Iterator;/** This operator can build all classifiers from the  *  <a href="http://www.cs.waikato.ac.nz/~ml/weka/">Weka</a> package.<br/> *  The classifier type can be selected by the parameter <var>weka_learner_name</var>.  *  Parameters can be passed to the Weka classifier using the Yale parameter *  <var>weka_parameters</var>. See the Weka javadoc for classifier and parameter  *  descriptions. * *  @yale.xmlclass WekaLearner *  @version $Id: WekaLearner.java,v 2.7 2003/08/14 10:24:57 fischer Exp $ */public class WekaLearner extends Learner {    public static final String[] WEKA_CLASSIFIERS = WekaTools.getWekaClasses(weka.classifiers.Classifier.class, 									     "weka.classifiers");    public Model learn(ExampleSet exampleSet) throws OperatorException {	String operatorName = getParameterAsString("weka_learner_name");	List wekaParameters = getParameterList("weka_parameters");	String[] parameters = WekaTools.getWekaParameters(wekaParameters);	Classifier classifier = null;	try {	    classifier = Classifier.forName(operatorName, parameters);	} catch (Exception e) {	    throw new UserError(this, e, 904, new Object[] { operatorName, e});	}	LogService.logMessage(getName() + ": Converting to Weka instances.", LogService.MINIMUM);	Instances instances = WekaTools.toWekaInstances(exampleSet, "TempInstances");	try {	    LogService.logMessage(getName() + ": Building Weka classifier.", LogService.MINIMUM);	    classifier.buildClassifier(instances);	} catch (Exception e) {	    throw new UserError(this, e, 905, new Object[] {operatorName, e});	}	boolean useDist = getParameterAsBoolean("use_distribution");	if (useDist && !(classifier instanceof weka.classifiers.DistributionClassifier)) {	    LogService.logMessage("use_distribution must only be true if the classifier is a DistributionClassifier", LogService.ERROR);	}	return new WekaClassifier(classifier, useDist);    }    public List getParameterTypes() {	List types = super.getParameterTypes();	types.add(new ParameterTypeStringCategory("weka_learner_name", "The fully qualified classname of the weka classifier.", WEKA_CLASSIFIERS));	types.add(new ParameterTypeList("weka_parameters", "Parameters for the Weka classifier as described in the Weka manual.", new ParameterTypeString(null, null)));	types.add(new ParameterTypeBoolean("use_distribution", "If set to true, the prediction of the model will not be the class, but the confidence for that class.", false));	return types;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -