⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nnlearner.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.learner.nn;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.learner.Learner;import edu.udo.cs.yale.operator.learner.Model;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.Example;import java.util.List;/** Learns a neural net. *  <h4>Parameters:</h4> *  <ul> *    <li><tt>hidden_layer</tt> number of neurons in the hidden layer *    <li><tt>lambda</tt> approximation increment *  </ul> *  <b>Classname for config-file:</b>NeuralNetLearner *  @author simon *  @version 22.06.2001 */public class NNLearner extends Learner {    private int hiddenLayer;    private double lambda;    public void initApply() throws OperatorException {	super.initApply();	hiddenLayer = getParameterAsInt("hidden_layer");	lambda      = getParameterAsDouble("lambda");    }    public Model learn(ExampleSet exampleSet) {	NeuralNet nn = new NeuralNet(hiddenLayer, exampleSet.getNumberOfAttributes(), 1, lambda);	ExampleReader i = exampleSet.getExampleReader();	while (i.hasNext()) {	    Example e = i.next();	    double[] s = new double[e.getNumberOfAttributes()];	    for (int j = 0; j < s.length; j++)		s[j] = e.getValue(j);	    nn.learn(s, new double[] { e.getLabel() });	}	return nn;    }        public List getParameterTypes() {	List types = super.getParameterTypes();	types.add(new ParameterTypeInt("hidden_layer", "Number of neurons in the hidden layer.", 0, Integer.MAX_VALUE, 10));	types.add(new ParameterTypeDouble("lambda", "Parameter lambda.", 0, 1, 0.05));	return types;    }    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -