⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wekamodel.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.learner;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.tools.WekaTools;import edu.udo.cs.yale.operator.OperatorException;import weka.core.Instance;import weka.core.Instances;/** Abstract Superclass for all Weka models. Subclasses are  *  {@link edu.udo.cs.yale.operator.clusterer.WekaCluster} *  and {@link WekaClassifier}, which can cluster or classify a weka instance  *  and set the result as the predicted label of single {@link Example}s. * *  @author ingo *  @version $Id: WekaModel.java,v 2.3 2003/05/06 20:02:10 fischer Exp $ */public abstract class WekaModel extends SerializableModel {    public void apply(ExampleSet exampleSet) throws OperatorException {	LogService.logMessage("Converting to Weka instances.", LogService.MINIMUM);	Instances instances = WekaTools.toWekaInstances(exampleSet, "ApplierInstances");	LogService.logMessage("Applying Weka classifier.", LogService.MINIMUM);	int i = 0;	ExampleReader r = exampleSet.getExampleReader();	while (r.hasNext()) {	    Example e = r.next();	    Instance instance = instances.instance(i++);	    applyModelForInstance(instance, e);	}    }    /** Applies the model for a single instance. The result should be set to the example.     */    public abstract void applyModelForInstance(Instance instance, Example e) throws OperatorException;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -