📄 wekamodel.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.learner;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.tools.WekaTools;import edu.udo.cs.yale.operator.OperatorException;import weka.core.Instance;import weka.core.Instances;/** Abstract Superclass for all Weka models. Subclasses are * {@link edu.udo.cs.yale.operator.clusterer.WekaCluster} * and {@link WekaClassifier}, which can cluster or classify a weka instance * and set the result as the predicted label of single {@link Example}s. * * @author ingo * @version $Id: WekaModel.java,v 2.3 2003/05/06 20:02:10 fischer Exp $ */public abstract class WekaModel extends SerializableModel { public void apply(ExampleSet exampleSet) throws OperatorException { LogService.logMessage("Converting to Weka instances.", LogService.MINIMUM); Instances instances = WekaTools.toWekaInstances(exampleSet, "ApplierInstances"); LogService.logMessage("Applying Weka classifier.", LogService.MINIMUM); int i = 0; ExampleReader r = exampleSet.getExampleReader(); while (r.hasNext()) { Example e = r.next(); Instance instance = instances.instance(i++); applyModelForInstance(instance, e); } } /** Applies the model for a single instance. The result should be set to the example. */ public abstract void applyModelForInstance(Instance instance, Example e) throws OperatorException;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -