⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multimodel.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.learner;import edu.udo.cs.yale.operator.OperatorChain;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.IOObject;import edu.udo.cs.yale.operator.IllegalInputException;import edu.udo.cs.yale.operator.IOContainer;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.MemoryExampleTable;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.tools.TempFileService;import java.io.*;/** MultiModels are used for multi class learning tasks. A MultiModel contains a set of Models that can  *  handle only two-class decisions. */public class MultiModel extends IOModel {    public static final String ID = "YALE MultiModel";    private static final int FILE_MODEL = 1;    private static final int IO_MODEL = 2;    private Model[] models;    public MultiModel(Model[] models) {	this.models = models;    }    public int getNumberOfModels() {	return models.length;    }    /** Returns a binary decision model for the given classification index. */    public Model getModel(int index) {	return models[index];    }    /** Iterates over all classes of the label and applies one model for each class. For each example     *  the predicted label is determined by choosing the model with the highest confidence. */    public void apply(ExampleSet exampleSet) throws OperatorException {	ExampleSet[] eSet   = new ExampleSet[getNumberOfModels()];		for (int i = 0; i < getNumberOfModels(); i++) {	    Model model = getModel(i);	    model.setPredictionType(PREDICT_CONFIDENCE);	    eSet[i] = (ExampleSet)exampleSet.clone();	    eSet[i].createPredictedLabel();	    model.apply(eSet[i]);	}	ExampleReader[] reader = new ExampleReader[eSet.length];	for (int r = 0; r < reader.length; r++) 	    reader[r] = eSet[r].getExampleReader();	ExampleReader originalReader = exampleSet.getExampleReader();	while (originalReader.hasNext()) {	    double bestLabel = Double.NaN;	    double highestFunctionValue = Double.NEGATIVE_INFINITY;	    for (int k = 0; k < reader.length; k++) { 		double functionValue = reader[k].next().getPredictedLabel();		if (functionValue > highestFunctionValue) {		    highestFunctionValue = functionValue;		    bestLabel = k + Attribute.FIRST_CLASS_INDEX;		}	    }	    originalReader.next().setPredictedLabel(bestLabel);	}    }    /** Writes the models subsequently to the output stream. */    public void writeData(ObjectOutputStream out) throws IOException {	out.writeInt(models.length);	for (int i = 0; i < models.length; i++) {	    models[i].writeModel(out);//  	    if (models[i] instanceof FileModel) {//  		out.writeByte(FILE_MODEL);//  		File modelfile = ((FileModel)models[i]).getModelFile();//  		int filesize = (int)modelfile.length();//  		out.writeInt(filesize);//  		byte buffer[] = new byte[filesize];//  		DataInputStream in = new DataInputStream(new FileInputStream(modelfile));//  		in.readFully(buffer);//  		in.close();//  		out.write(buffer);//  	    } else if (models[i] instanceof SerializableModel) {//  		out.writeByte(IO_MODEL);//  		out.writeObject(models[i]);//  	    } else {//  		LogService.logMessage("MultiModel.writeModel(File) cannot handle model of class '"+models[i].getClass()+"'", LogService.ERROR);//  	    }	}    }    /** Reads all models from the file. */    public void readData(ObjectInputStream in) throws IOException, OperatorException {	this.models = new Model[in.readInt()];	for (int i = 0; i < models.length; i++) {	    models[i] = Model.readModel(in);//  	    int type = in.readByte();//  	    switch(type) {//  	    case IO_MODEL://  		models[i] = IOModel.readModel(in);//  		break;//  	    case FILE_MODEL://  		int filesize = in.readInt();//  		byte buffer[] = new byte[filesize];//  		in.readFully(buffer);//  		File modelFile = TempFileService.createTempFile("multimodel_"+i+".mod");//  		DataOutputStream out = new DataOutputStream(new FileOutputStream(modelFile));//  		out.write(buffer);//  		out.close();//  		models[i] = new FileModel(modelFile);//  		break;//  	    default://  		LogService.logMessage("MultiModel.readModel(): unknown model type: "+type, LogService.ERROR);//  		break;//  	    }	}    }    public String getIdentifier() { return ID; }    public String toString() {	String result = super.toString() + "\n";	for (int i = 0; i < models.length; i++) 	    result += (i>0?"\n":"") + models[i].toString();	return result;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -