⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wekaassociationlearner.java

📁 著名的开源仿真软件yale
💻 JAVA
字号:
/* *  YALE - Yet Another Learning Environment *  Copyright (C) 2002, 2003 *      Simon Fischer, Ralf Klinkenberg, Ingo Mierswa,  *          Katharina Morik, Oliver Ritthoff *      Artificial Intelligence Unit *      Computer Science Department *      University of Dortmund *      44221 Dortmund,  Germany *  email: yale@ls8.cs.uni-dortmund.de *  web:   http://yale.cs.uni-dortmund.de/ * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU General Public License as  *  published by the Free Software Foundation; either version 2 of the *  License, or (at your option) any later version.  * *  This program is distributed in the hope that it will be useful, but *  WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *  General Public License for more details. * *  You should have received a copy of the GNU General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 *  USA. */package edu.udo.cs.yale.operator.learner;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.Operator;import edu.udo.cs.yale.operator.IOObject;import edu.udo.cs.yale.operator.ResultObjectAdapter;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.operator.UserError;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.tools.Ontology;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.tools.WekaTools;import weka.associations.Associator;import weka.core.Instances;import java.util.List;import java.util.Iterator;/** This class builds a Weka Associator. The operator returns a result object *  containing the rules found by the association learner. In contrast to models *  generated by normal learners, the association rules cannot be applied to *  an example set. Hence, there is no way to evaluate the performance of association *  rules yet. * *  @yale.xmlclass WekaAssociator *  @version $Id: WekaAssociationLearner.java,v 2.1 2003/08/06 11:52:57 fischer Exp $ */public class WekaAssociationLearner extends Operator {    public static final String[] WEKA_CLASSIFIERS = WekaTools.getWekaClasses(weka.associations.Associator.class, 									     "weka.associations");    public Class[] getInputClasses() { return new Class[] { ExampleSet.class }; }    public Class[] getOutputClasses() { return new Class[] { WekaAssociator.class }; }    public static class WekaAssociator extends ResultObjectAdapter {	private Associator associator;	public WekaAssociator(Associator associator) {	    this.associator = associator;	}	public String toString() {	    return associator.toString();	}    }    public IOObject[] apply() throws OperatorException {	ExampleSet exampleSet = (ExampleSet)getInput(ExampleSet.class);	String operatorName = getParameterAsString("weka_associator_name");	List wekaParameters = getParameterList("weka_parameters");	String[] parameters = WekaTools.getWekaParameters(wekaParameters);	Associator associator = null;	try {	    associator = Associator.forName(operatorName, parameters);	} catch (Exception e) {	    throw new UserError(this, e, 904, new Object[] { operatorName, e});	}	LogService.logMessage(getName() + ": Converting to Weka instances.", LogService.MINIMUM);	Instances instances = WekaTools.toWekaInstances(exampleSet, "TempInstances");	try {	    LogService.logMessage(getName() + ": Building Weka associator.", LogService.MINIMUM);	    associator.buildAssociations(instances);	} catch (Exception e) {	    throw new UserError(this, e, 905, new Object[] {operatorName, e});	}	return new IOObject[] { new WekaAssociator(associator) };    }    public List getParameterTypes() {	List types = super.getParameterTypes();	types.add(new ParameterTypeStringCategory("weka_associator_name", "The fully qualified classname of the weka associator.", WEKA_CLASSIFIERS));	types.add(new ParameterTypeList("weka_parameters", "Parameters for the Weka associator as described in the Weka manual.", new ParameterTypeString(null, null)));	return types;    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -