📄 conceptdriftsimulatorexample.xml.old
字号:
<!-- Concept drift experiment, ICML-2000 scenario A: --><!-- Window of fixed size of 3 batches with SVM^light learner --><operator name="GlobalExperimentChain" class="Experiment"> <parameter key="resultfile" value="Result.ConceptDrift.ScenarioA.FixedSize.txt"/> <parameter key="logfile" value="Log.ConceptDrift.ScenarioA.FixedSize.txt"/> <parameter key="logverbosity" value="minimum"/> <parameter key="random_seed" value="2001"/> <parameter key="temp_dir" value="./tmp"/> <parameter key="keep_temp_files" value="none"/> <!-- 'all' or 'none' --> <parameter key="notification_email" value="klinkenberg@ls8.cs.uni-dortmund.de"/> <!-- use your e-mail address here --> <!-- ===== Read document vectors ===== --> <operator name="TrecExampleSetSource" class="SparseFormatExampleSource"> <parameter key="attribute_file" value="./data/trec/document.vectors"/> <!-- file with document vectors in sparse format --> <parameter key="label_file" value="./data/trec/document.topics"/> <!-- file with document labels --> <parameter key="dimension" value="25410"/> <!-- optional because of auto-detection --> <parameter key="max_examples" value="2608"/> <!-- optional because of auto-detection --> <parameter key="format" value="separate_file"/> <!-- document vectors and labels are provided in two separate files --> </operator> <!-- ===== Concept drift simulation ===== --> <operator name="ConceptDriftSimulation" class="ConceptDriftSimulator"> <parameter key="number_of_runs" value="10"/> <!-- no. of experiment repititions for averaging --> <parameter key="number_of_batches" value="20"/> <!-- no. of time steps (batches) to be simulated --> <!-- in each run --> <parameter key="number_of_streams" value="5"/> <!-- no. of original data streams (e.g. no. of --> <!-- original classes) --> <parameter key="data_stream_names" value="Topic1 Topic3 Topic4 Topic5 Topic6"/> <!-- names of original classes --> <parameter key="data_stream_relevance" <!-- Batch: --> <!-- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 --> value= <!-- Scenario A: --> "Topic1 : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Topic3 : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0" <!-- Scenario B: --> <!-- "Topic1 : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Topic3 : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0" --> /> <parameter key="learner_type" value="static_window"/> <!-- 'static_window': use a fixed time window ... --> <parameter key="window_size" value="3"/> <!-- ... of the fixed size 3 batches --> <!-- 'static': full memory approach (use all old data) --> <!-- 'adaptive': use adaptive or weighted window learner --> <!-- Learning chain with time step model finder --> <operator name="TimeWinLearner" class="OperatorChain"> <!-- for static windows --> <!-- class="BatchWindowLearner"> --> <!-- for adaptive window --> <!-- class="BatchWeightLearner"> --> <!-- for weighted adaptive window --> <operator name="Learner" class="SVMLightLearner"> <parameter key="kernel_type" value="linear"/> <parameter key="additional_parameters" value="-c 1000 -x 1"/> <!-- set 'C' to 1000 and use xi-alpha --> <!-- error estimation --> </operator> <!-- mySVM learner as an alternative to the SVM^light learner: <operator name="Learner" class="MySVMLearner"> <parameter key="pattern" value=""/> <!-- task: classification --> <parameter key="type" value="dot"/> <!-- kernel: linear (dot product) --> <parameter key="C" value="1000"/> <parameter key="epsilon" value="0.1"/> <parameter key="verbosity" value="0"/> <parameter key="sparse" value="true"/> <!-- use sparse data format --> <parameter key="weighted_examples" value="true"/> <!-- use weighted examples --> <parameter key="xi_alpha_estimation" value="true"/> <!-- use xi-alpha error estimation --> </operator> --> </operator> <!-- Application and evaluation chain --> <operator name="ConceptDriftApplierChain" class="OperatorChain"> <operator name="Applier" class="ModelApplier" /> <operator name="PerfEvaluator" class="PerformanceEvaluator"> <parameter key="classification_error" value="true"/> <parameter key="precision" value="true"/> <parameter key="recall" value="true"/> <parameter key="main_criterion" value="classification_error"/> </operator> <operator name="RunResultWriter" class="ResultWriter"/> </operator> </operator> <!-- end of ConceptDriftSimulation --> <operator name="AverageResultWriter" class="ResultWriter"/></operator> <!-- end of GlobalExperimentChain -->
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -