⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 conceptdriftsimulatorexample.xml.old

📁 著名的开源仿真软件yale
💻 OLD
字号:
<!-- Concept drift experiment, ICML-2000 scenario A:          --><!-- Window of fixed size of 3 batches with SVM^light learner --><operator name="GlobalExperimentChain" class="Experiment">  <parameter key="resultfile"             value="Result.ConceptDrift.ScenarioA.FixedSize.txt"/>  <parameter key="logfile"             value="Log.ConceptDrift.ScenarioA.FixedSize.txt"/>  <parameter key="logverbosity"    value="minimum"/>  <parameter key="random_seed"     value="2001"/>  <parameter key="temp_dir"        value="./tmp"/>  <parameter key="keep_temp_files" value="none"/>             <!-- 'all' or 'none' -->  <parameter key="notification_email"              value="klinkenberg@ls8.cs.uni-dortmund.de"/>             <!-- use your e-mail address here -->  <!-- =====  Read document vectors  ===== -->  <operator name="TrecExampleSetSource" class="SparseFormatExampleSource">    <parameter key="attribute_file" value="./data/trec/document.vectors"/>               <!-- file with document vectors in sparse format -->    <parameter key="label_file" value="./data/trec/document.topics"/>               <!-- file with document labels -->    <parameter key="dimension"    value="25410"/>               <!-- optional because of auto-detection -->    <parameter key="max_examples" value="2608"/>               <!-- optional because of auto-detection -->    <parameter key="format"       value="separate_file"/>               <!-- document vectors and labels are provided in two separate files  -->  </operator>  <!-- =====  Concept drift simulation ===== -->  <operator name="ConceptDriftSimulation" class="ConceptDriftSimulator">    <parameter key="number_of_runs"    value="10"/>               <!-- no. of experiment repititions for averaging -->    <parameter key="number_of_batches" value="20"/>               <!-- no. of time steps (batches) to be simulated -->               <!-- in each run                                 -->    <parameter key="number_of_streams" value="5"/>               <!-- no. of original data streams (e.g. no. of -->               <!-- original classes)                         -->    <parameter key="data_stream_names"               value="Topic1 Topic3 Topic4 Topic5 Topic6"/>               <!-- names of original classes -->    <parameter      key="data_stream_relevance"      <!-- Batch:      -->      <!--       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19      -->      value=      <!-- Scenario A: -->      "Topic1 : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0       Topic3 : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0"      <!-- Scenario B: -->      <!--      "Topic1 : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0       Topic3 : 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0"      -->    />    <parameter key="learner_type" value="static_window"/>       <!-- 'static_window': use a fixed time window ...        -->    <parameter key="window_size"  value="3"/>       <!--                  ... of the fixed size 3 batches    -->       <!-- 'static':   full memory approach (use all old data) -->       <!-- 'adaptive': use adaptive or weighted window learner -->    <!-- Learning chain with time step model finder -->    <operator name="TimeWinLearner"              class="OperatorChain">                <!-- for static windows -->              <!-- class="BatchWindowLearner"> -->                <!-- for adaptive window -->              <!-- class="BatchWeightLearner"> -->                <!-- for weighted adaptive window -->      <operator name="Learner" class="SVMLightLearner">        <parameter key="kernel_type" value="linear"/>        <parameter key="additional_parameters"                   value="-c 1000 -x 1"/>                   <!-- set 'C' to 1000 and use xi-alpha -->                   <!-- error estimation                 -->      </operator>      <!-- mySVM learner as an alternative to the SVM^light learner:      <operator name="Learner" class="MySVMLearner">       <parameter key="pattern"             value=""/>                  <!-- task: classification -->       <parameter key="type"                value="dot"/>                  <!-- kernel: linear (dot product) -->       <parameter key="C"                   value="1000"/>       <parameter key="epsilon"             value="0.1"/>       <parameter key="verbosity"           value="0"/>       <parameter key="sparse"              value="true"/>                  <!-- use sparse data format -->       <parameter key="weighted_examples"   value="true"/>                  <!-- use weighted examples -->       <parameter key="xi_alpha_estimation" value="true"/>                  <!-- use xi-alpha error estimation -->      </operator>      -->    </operator>    <!-- Application and evaluation chain -->    <operator name="ConceptDriftApplierChain"              class="OperatorChain">      <operator name="Applier" class="ModelApplier" />      <operator name="PerfEvaluator"                class="PerformanceEvaluator">        <parameter key="classification_error" value="true"/>        <parameter key="precision"            value="true"/>        <parameter key="recall"               value="true"/>        <parameter key="main_criterion"                   value="classification_error"/>      </operator>      <operator name="RunResultWriter" class="ResultWriter"/>    </operator>  </operator>  <!-- end of ConceptDriftSimulation -->  <operator name="AverageResultWriter" class="ResultWriter"/></operator>  <!-- end of GlobalExperimentChain -->

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -