📄 wekaclusterer.java
字号:
/* * YALE - Yet Another Learning Environment * Copyright (C) 2002, 2003 * Simon Fischer, Ralf Klinkenberg, Ingo Mierswa, * Katharina Morik, Oliver Ritthoff * Artificial Intelligence Unit * Computer Science Department * University of Dortmund * 44221 Dortmund, Germany * email: yale@ls8.cs.uni-dortmund.de * web: http://yale.cs.uni-dortmund.de/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */package edu.udo.cs.yale.operator.clusterer;import edu.udo.cs.yale.operator.parameter.*;import edu.udo.cs.yale.operator.UserError;import edu.udo.cs.yale.example.Attribute;import edu.udo.cs.yale.example.Example;import edu.udo.cs.yale.example.ExampleReader;import edu.udo.cs.yale.example.ExampleSet;import edu.udo.cs.yale.operator.learner.Learner;import edu.udo.cs.yale.operator.learner.Model;import edu.udo.cs.yale.operator.OperatorException;import edu.udo.cs.yale.tools.Ontology;import edu.udo.cs.yale.tools.LogService;import edu.udo.cs.yale.tools.WekaTools;import weka.core.Instances;import java.util.List;import java.util.Iterator;/** This operator can build all clusterers from the * <a href="http://www.cs.waikato.ac.nz/~ml/weka/">Weka</a> package. * The clusterer type can be selected by a parameter. See the weka javadoc * for descriptions.<br/> * This operator will create an additional special integer attribute named * "cluster". The values of this attribute specify the index of the * cluster an example was assigned to. * * @yale.xmlclass WekaClusterer * @version $Id: WekaClusterer.java,v 2.6 2003/08/14 10:24:57 fischer Exp $ */public class WekaClusterer extends Clusterer { public static final String[] WEKA_CLUSTERERS = WekaTools.getWekaClasses(weka.clusterers.Clusterer.class, "weka.clusterers"); public Model cluster(ExampleSet exampleSet) throws OperatorException { String operatorName = getParameterAsString("weka_clusterer_name"); List wekaParameters = getParameterList("weka_parameters"); String[] parameters = WekaTools.getWekaParameters(wekaParameters); weka.clusterers.Clusterer clusterer = null; try { clusterer = weka.clusterers.Clusterer.forName(operatorName, parameters); } catch (Exception e) { throw new UserError(this, e, 904, new Object[] { operatorName, e }); } Instances instances = WekaTools.toWekaInstances(exampleSet, "TempInstances"); WekaCluster wekaCluster = null; try { clusterer.buildClusterer(instances); wekaCluster = new WekaCluster(clusterer); exampleSet.createClusterAttribute(); wekaCluster.apply(exampleSet); } catch (Exception e) { throw new UserError(this, e, 905, new Object[] { operatorName, e }); } return wekaCluster; } public List getParameterTypes() { List types = super.getParameterTypes(); types.add(new ParameterTypeStringCategory("weka_clusterer_name", "The fully qualified classname of the weka clusterer.", WEKA_CLUSTERERS)); //types.add(new ParameterTypeString("weka_clusterer", "Fully qualified name of the Weka class to use for clustering.", null)); types.add(new ParameterTypeList("weka_parameters", "Parameters for the Weka classifier as described in the Weka manual.", new ParameterTypeString(null, null))); return types; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -